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  A generative model for predicting outcomes 
in college basketball   
  Abstract:   We show that a classical model for soccer can 

also provide competitive results in predicting basketball 

outcomes. We modify the classical model in two ways in 

order to capture both the specific behavior of each National 

collegiate athletic association (NCAA) conference and dif-

ferent strategies of teams and conferences. Through simu-

lated bets on six online betting houses, we show that this 

extension leads to better predictive performance in terms 

of profit we make. We compare our estimates with the 

probabilities predicted by the winner of the recent Kaggle 

competition on the 2014 NCAA tournament, and conclude 

that our model tends to provide results that differ more 

from the implicit probabilities of the betting houses and, 

therefore, has the potential to provide higher benefits.  
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1     Introduction 
 In this paper, we aim at estimating probabilities in sports. 

Specifically, we focus on the March Madness Tourna-

ment in college basketball,  1     although the model is general 

enough to model nearly any team sport for regular season 

and play-off games (assuming that both teams are willing 

to win). Estimating probabilities in sport events is chal-

lenging, because it is unclear what variables affect the 

outcome and what information is publicly known before 

the games begin. In team sports, it is even more compli-

cated, because the information about individual players 

becomes relevant. Although there has been some attempts 

to model individual players ( Miller et  al. 2014 ), there is 

no standard method to evaluate the importance of indi-

vidual players and remove their contribution to the team 

when players do not play or get injured or suspended. It 

is also unclear if considering individual player informa-

tion can improve predictions with no overfit. For college 

basketball, even more variables come into play, because 

there are 351 teams divided in 32 conferences, they only 

play about 30 regular games and the match-ups are not 

random, so the results do not directly show the level of 

each team. 

 In the literature, we can find several variants of a 

simple model for soccer that identifies each team by its 

attack and defense coefficients ( Baio and Blangiardo 

2010 ;  Crowder et  al. 2002 ;  Dixon and Coles 1997 ; Heuer, 

Muller, and Rubner 2010;  Maher 1982 ). In all these works, 

the score for the home team is drawn from a Poisson dis-

tribution, whose mean is the multiplicative contribution 

of the home team attack coefficient and the away team 

defense coefficient. The score of the visitor team is an 

independent Poisson random variable, whose mean is 

the visitor attack coefficient multiplied by the home team 

defense coefficient. These coefficients are estimated by 

maximum likelihood using the past results and used to 

predict future outcomes. 

 A similar model can be found in the literature of 

Poisson factorization ( Canny 2004 ;  Cemgil 2009 ;  Dunson 

and Herring 2005 ), where the elements of a matrix are 

assumed to be independent Poisson random variables 

given some latent attributes. For instance, in Poisson 

factorization for recommendation systems (Gopalan, 

Hofman, and Blei 2013), where the input is a user/item 

matrix of ratings, each user and each item is represented 

by a  K -dimensional latent vector of positive weights. Each 

rating is modeled by a Poisson distribution parameterized 

by the inner product of the user ’ s and item ’ s weights. 

 We build a model that combines these two ideas 

(Poisson factorization and the model for soccer) and takes 

into account the structure of the Men ’ s Division I Basket-

ball of the National collegiate athletic association (NCAA). 

In order to estimate the mean of the Poisson distributions, 

we define an attack and defense vector for each team 

and for each NCAA conference. The conference-specific 

  1    http://www.ncaa.com/march-madness   
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coefficients model the overall behavior of each conference, 

while the team-specific coefficients capture differences 

within each conference. To estimate the coefficients, we 

apply a variational inference algorithm. For comparisons, 

we adhere to the rules in the recent Kaggle competition,  2     

in which all the predictions have to be in place before the 

actual tournament starts, i.e., we do not use the results in 

the first rounds of the tournament to improve the predic-

tions in the subsequent rounds. 

 We use two metrics to validate the model. First, we 

compute the average negative log-likelihood of the pre-

dicted probabilities for the winning teams. This metric 

is used to determine the winners of the Kaggle competi-

tion. Unfortunately, the test sample size (63 games) is too 

small and almost all reasonable participants are statisti-

cally indistinguishable from the winner. Compared to the 

winner ’ s probability estimates, we could not reject the 

null hypothesis of a Wilcoxon signed-rank test ( Wilcoxon 

1945 ) for 198 out of the remaining 247 participants. With 

so few test cases, it is unclear if the winners had a better 

model or were just lucky. This serves as an excuse for sore 

losers (we were ranked  # 39 in the competition), but more 

importantly as a word of advice for these competitions, in 

which metrics should be able to tell without doubt that 

some participants did significantly better (making use of 

statistical tests to tell them apart). Second, we compute 

the profit we would make after betting on six on-line 

betting houses using Kelly ’ s criterion ( Kelly 1956 ). Kelly ’ s 

criterion assumes that our estimates are the true underly-

ing probabilities, and the betting house odds are only an 

estimate. It provides the fraction of our bankroll that we 

should stake on each bet in order to maximize the long 

term growth rate of our fortune and make sure that we do 

not lose it all. This metric tells us how good our probabil-

ity estimates are when compared to those of the betting 

houses. Our model outperforms the considered betting 

houses and the Kaggle competition winner.  

2    Model description 
 We develop a statistical model for count data, corre-

sponding to the outcomes of each basketball game. For 

each game  m   =  1, … , M , we observe the pair   ( , ),H A
m my y  

which are the points scored by the home and away teams, 

respectively. 

 The soccer model by  Maher (1982)  or  Dixon and Coles 

(1997)  introduces an attack and defense coefficient for 

each team  t   =  1, … , T , denoted, respectively, by   α   
 t   and   β   

 t 
 . 

Given these coefficients, the number of scores obtained 

by the home and away sides at game  m  are independently 

distributed as 

    

γα β

α β
( ) ( )

( ) ( )

~Poisson( ),

~Poisson( ),

H
m h m a m
A
m a m h m

y
y  (1) 

 respectively. Here, the index  h ( m ) ∈  { 1, … ,  T  }  identifies the 

team that is playing at home in the  m  -th game and, simi-

larly,  a(m)  identifies the team that is playing away. The 

parameter   γ   is the home coefficient and represents the 

advantage for the team hosting the game. This effect is 

assumed to be constant for all the teams and throughout 

the season. Note also that   β   
 t   is actually a  “ inverse defense ”  

coefficient, in the sense that smaller values represent 

better defense capabilities. 

 For the NCAA Tournament, we modify the model in Eq. 

1 in two ways. First, we represent each team with  K  
1
  attack 

coefficients and  K  
1
  defense coefficients, which are grouped 

for each team in vectors  α  
 t   and   β   

 t  , respectively. Each coef-

ficient may represent a particular tactic or strategy, so that 

teams can be good at defending some tactics but worse at 

defending others (the same applies for attacking). Second, 

we also take into account the conference to which each 

team belongs.  3     For that purpose, we introduce conference-

specific attack and defense coefficients, allowing us to 

capture the overall behavior of each conference. We denote 

by   η   
 l   and   ρ   

 l   the  K  
2
 -dimensional attack and defense coeffi-

cient vectors of conference  l , respectively, and we introduce 

index  l ( t ) ∈  { 1 , … ,  L  }  to represent the conference to which 

team  t  belongs. Hence, we model the outcome at game  m  as 

    

γ γ+
+

� �

� �

( ) ( ) ( ( )) ( ( ))

( ) ( ) ( ( )) ( ( ))

~Poisson( ),

~Poisson( ).

H
m h m a m h m a m
A
m a m h m a m h m

y
y

αα β η ρ

α β η ρ

ᵀ ᵀ

ᵀ ᵀ  (2) 

 To complete the specification of the model, we place 

independent gamma priors over the elements of the attack 

and defense vectors, as well as a gamma prior over the 

home coefficient. Throughout the paper, we parametrize 

the gamma distribution with its shape and rate. Therefore, 

the generative model is as follows:

1.    Draw the home coefficient   γ   ∼ gamma( s  
  γ   ,  r  

  γ   ).  

2.   For each team  t   =  1,  … ,  T :

(a)    Draw the attack coefficients   α   
 t,k 

  ∼ gamma( s  
  α   ,  r  

  α   ) for 

 k   =  1,  … ,  K  
1
   

(b)   Draw the defense coefficients   β   
 t,k 

  ∼ gamma( s  
  β   ,  r  

  β   ) 

for  k   =  1,  … ,  K  
1
 .     

  2    https://www.kaggle.com/c/march-machine-learning-mania   

  3   We consider North and South Divisions of Big South Conference as 

two different conferences. The same applies to Mid-American Confer-

ence (East and West) and Ohio Valley (East and West).  
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3.   For each conference  l   =  1,  … ,  L :

(a)    Draw the attack coefficients   η   
 l,k 

  ∼ gamma( s  
  η   ,  r  

  η   ) for 

 k   =  1,  … ,  K  
2
 .  

(b)   Draw the defense coefficients   ρ   
 l,k 

  ∼ gamma( s  
  ρ   ,  r  

  ρ   ) 

for  k   =  1,  … ,  K  
2
 .     

4.   For each game  m   =  1,  … ,  M :

(a)    Draw the score

γ γ+ � �( ) ( ) ( ( )) ( ( ))
~Poisson( ).H

m h m a m h m a my αα β η ρᵀ ᵀ     

(b)   Draw the score

 + � �( ) ( ) ( ( )) ( ( ))
~Poisson( ).A

m a m h m a m h my αα β η ρᵀ ᵀ          

 Thus, the shape and rate parameters of the  a priori  gamma 

distributions are hyperparameters of our model. The cor-

responding graphical model is shown in  Figure 1  , in which 

circles correspond to random variables and gray-shaded 

circles represent observations.  

3    Inference 
 In this section, we describe a mean-field inference algorithm 

to approximate the posterior distribution of the attack and 

defense coefficients, as well as the home coefficient, which 

we need to predict the outcomes of the tournament games. 

 Variational inference provides an alternative to Markov 

chain Monte Carlo (MCMC) methods as a general source 

of approximation methods for inference in probabilistic 

models ( Jordan et  al. 1999 ). Variational algorithms turn 

inference into a non-convex optimization problem, but they 

are in general computationally less demanding compared to 

MCMC methods and do not suffer from limitations involving 

mixing of the Markov chains. In a general variational infer-

ence scenario, we have a set of hidden variables  Φ  whose 

posterior distribution given the observations   y   is intractable. 

In order to approximate the posterior   ( | , ),p Φ y H  where 

  H  denotes the set of hyperparameters of the model, we 

first define a parametrized family of distributions over the 

hidden variables,  q ( Φ ), and then fit their parameters to find 

ηl,k

ρl,k

αt,k

βt,k

sα

rα

rβ

sβ

sη

rη

rρ

sρ

sγ

rγ

γ

y H
m

y A
m

m=1,..., M
l=1,..., L

k=1,..., K1 k=1,..., K2

t=1,..., T

 Figure 1      Graphical model representation for our generative model.    

a distribution that is close to the true posterior. Closeness 

is measured in terms of Kullback-Leibler (KL) divergence 

between both distributions  D  
 KL 

 ( q  |  |  p ). The computation of 

the KL divergence is intractable, but fortunately, minimizing 

 D  
 KL 

 ( q  |  |  p ) is equivalent to maximizing the so-called evidence 

lower bound (ELBO)   ,L  since 

    
Φ

Φ

= + +
≥ +

log ( | ) [log ( , | ) ] [ ] ( || )

[log ( , | ) ] [ ] ,
KLp p H q D q p

p H q
y y

y
H H

H L�

E
E  (3) 

 where the expectations above are taken with respect to 

the variational distribution  q ( Φ ), and H[ q ] denotes the 

entropy of the distribution  q ( Φ ). 

 Typical variational inference methods maximize the 

ELBO   L  by coordinate ascent, iteratively optimizing each 

variational parameter. A closed-form expression for the cor-

responding updates can be easily found for conditionally 

conjugate variables, i.e., variables whose complete condi-

tional is in the exponential family. We refer to (  Ghahramani 

and Beal 2001 ;  Hoffman et al. 2013 ) for further details. In 

order to obtain a conditionally conjugate model, and fol-

lowing ( Dunson and Herring 2005 ;  Gopalan et  al. 2013 , 

2014;  Zhou et al. 2012 ), we augment the representation by 

defining for each game the auxiliary latent variables 

   

1 2

, ( ), ( ), , ( ( )), ( ( )),

1 2

, ( ), ( ), , ( ( )), ( ( )),

~Poisson( ), ~Poisson( ),

~Poisson( ),   ~Poisson( ),

H H
m k h m k a m k m k h m k a m k
A A
m k a m k h m k m k a m k h m k

z z
z z

γα β γη ρ

α β η ρ
� �

� �

 (4) 

 so that the observations for the home and away scores can 

be, respectively, expressed as 

    
1 2 1 2

1 2 1 2

, , , ,
1 1 1 1

,   and  ,

K K K K
H H H A A A
m m k m k m m k m k

k k k k
y z z y z z

= = = =

= + = +∑ ∑ ∑ ∑  (5) 

 due to the additive property of Poisson random variables. 

Thus, the auxiliary variables preserve the marginal Poisson 

distribution of the observations. Furthermore, the complete 

conditional distribution over the auxiliary variables, given 

the observations and the rest of latent variables, is a Multi-

nomial. Using the auxiliary variables, and denoting    α     =   {    α    
 t   } , 

   β     =   {    β    
 t   } ,    η     =   {    η    

 l   } ,    ρ     =   {    ρ    
 l   }  and   1 2 1 2{ , , , },H H A A

mk mk mk mkz z z z=z  the joint 

distribution over the hidden variables can be written as 

   

1

, ,
1 1

2

, ,
1 1

1
1 1

, ( ), ( ), , ( ), ( ),
1 1

2
2

,
1 1

( , , , , , | ) ( | , ) ( | , )

( | , ) ( | , ) ( | , )

( | , , ) ( | , )

( | , 

KT

t k t k
t k

KL

l k l k
l k

KM
H A
m k h m k a m k m k a m k h m k

m k
KM

H
m k

m k

p p s r p s r

p s r p s r p s r

p z p z

p z

α α β β

γ γ η η ρ ρ

γ α β

γ η ρ

γ α β α β

γ η

= =

= =

= =

= =

=

×

×

×

∏∏

∏∏

∏∏

∏∏

z

�

αα β η ρ H

2

( ( )), ( ( )), , ( ( )), ( ( )),
, ) ( | , ),A

h m k a m k m k a m k h m kp zρ η ρ� � �

 (6) 
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 and the observations are generated according to Eq. 5. In 

mean-field inference, the posterior distribution is approx-

imated with a completely factorized variational distribu-

tion, i.e.,  q  is chosen as 

    

1

, ,
1 1

2

, ,
1 1 1

( , , , , , ) ( ) ( ) ( )

( ) ( ) ( ) ( ),

KT

t k t k
t k

KL M
H A

l k l k m m
l k m

q q q q

q q q q

γ γ α β

η ρ

= =

= = =

= ∏∏

∏∏ ∏

z

z z

αα β η ρ

 (7) 

 being   H
mz  the vector containing the variables   

1 2{ , }H H
mk mkz z  

for game  m  (and similarly for   A
mz  and   1 2{ , } ).A A

mk mkz z  For 

conciseness, we have removed the dependency on the var-

iational parameters in Eq. 7. We set the variational distribu-

tion for each variable in the same exponential family as the 

corresponding complete conditional, therefore yielding 

    

γ γ γ γ

α α α α

β β β β

η η η η

ρ ρ ρ ρ

=
=
=
=
=
=

shp rte

shp rte

, , , ,

shp rte

, , , ,

shp rte

, , , ,

shp rte

, , , ,

( ) gamma( | , ),

( ) gamma( | , ),   

( ) gamma( | , ),

( ) gamma( | , ),      

( ) gamma( | , ),

( ) multinomial(

t k t k t k t k

t k t k t k t k

l k l k l k l k

l k l k l k l k
H
m

q
q
q
q
q
q z

=
| , ), 

( ) multinomial( | , ).

H H H
m m m

A A A A
m m m m

y
q y

z
z z

φφ

φ

 

(8)

 

 Then, the set of variational parameters is composed 

of the shape and rate for each gamma distribution, as well 

as the probability vectors   H
mφφ  and   A

mφφ  for the multinomial 

distributions. Note that   H
mφφ  and   A

mφφ  are both ( K  
1
  +  K  

2
 )-

dimensional vectors. To minimize the KL divergence and 

obtain an approximation of the posterior, we apply a coor-

dinate ascent algorithm (the update equations of the vari-

ational parameters are given in Appendix A).  

4    Experiments 

4.1    Experimental setup 

 We apply our variational algorithm to last 4 years of NCAA 

Men ’ s Division I Basketball Tournament. Here, we focus on 

2014 tournament, while results for previous years can be 

found in Appendix B. Following the recent Kaggle competi-

tion procedure, we fit the model using the regular season 

results of over 5000 games to predict the outcome of the 63 

tournament games.  4     As in Kaggle competition, we do not 

predict the  “ first four ”  games (they are not considered in 

the learning stage either). We apply the algorithm described 

in Section 3 independently for each season, because teams 

exhibit different strength even at consecutive seasons, 

probably due to the high turnaround of players. Note that 

the data include a variable which indicates whether one 

of the teams was hosting the game, or it was played on a 

neutral court. We include this variable in our formulation 

of the problem, and therefore we remove the home coeffi-

cient   γ   for games in which the site was considered neutral. 

We use the output of our algorithm, i.e., the parameters 

for the approximate posterior distribution over the hidden 

coefficients, to estimate the probability of teams winning 

in each Tournament game.  5     To test the model, we simulate 

betting on the Tournament games using data from several 

betting houses  6     (missing entries in the bookmaker betting 

odd matrices were not taken into account). 

 For hyperparameter selection, we carried out an 

exhaustive grid search, but did not find significant dif-

ferences in our results as a consequence of the shape 

and rate values of the  a priori  gamma distributions. The 

experiments that we describe in this section were run with 

shape 1 and rate 0.1, except for the home coefficient, for 

which we use unit shape and rate. 

 For the training stage, we initialize our algo-

rithm by randomly setting all the variational param-

eters. Every 10 iterations, we compute the ELBO as 

  γ γ= +[log ( , , , , , | ) ] [log ( , , , , , ) ],p qz zL Hαα β η ρ α β η ρE E  

where the expectations are taken with respect to the vari-

ational distribution  q . The training process stops when 

the relative change in the ELBO is   <  10  – 8 , or when 10 6  itera-

tions are reached (whatever happens first). 

 After convergence, we estimate the probabilities of 

each team winning for the 63 games in the tournament. We 

estimate them for each game  m  by computing the expected 

Poisson means as   
( ) ( ) ( ( )) ( ( ))

[ ] [ ]H
m h m a m h m a my = + � �αα β η ρ� �E E  

and   
( ) ( ) ( ( )) ( ( ))

[ ] [ ].A
m a m h m a m h my = + � �αα β η ρ� �E E  Holding both 

means fixed, the difference   H A
m my y−  follows a Skellam 

distribution ( Skellam 1946 ) with parameters   [ ]H
myE  and 

  [ ].A
myE  We compute the probability of team  h ( m ) winning 

the game as   − − ≠Prob( >0| 0).H A H A
m m m my y y y  Alternatively, we 

can estimate probabilities by sampling from the approxi-

mate posterior distribution, with no significant difference 

in the predictions. We average the predicted probabilities 

for 100 independent runs of the variational algorithm, 

  4   Data was collected from  https://www.kaggle.com/c/march-ma-

chine-learning-mania/data   

  5   We also remove   γ   for predictions, as all tournament games are 

played in a neutral court.  

  6   Bookmaker betting odds were extracted from  http://www.oddspor-

tal.com/basketball/usa/ncaa-i-a/results   
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 Table 1      Ranking of conferences provided by our model.  

 #     Value    Conference     #  Teams     #     Value    Conference     #  Teams  

1  8.2  Pac-12   6  19   – 0.6  Big Sky   1

2  8.0  Big Ten   6  20   – 1.3  Sun Belt   1

3  4.7  ACC   6  21   – 1.3  Southern   1

4  4.2  Big 12   7  22   – 1.9  Ivy League   1

5  4.1  Atlantic 10   6  23   – 1.9  Ohio Valley (E)   1

6  3.9  Colonial Athletic Association  1  24   – 2.4  Northeast   1

7  3.8  Big East   4  25   – 2.5  Summit League   1

8  3.3  American   4  26   – 2.9  Mid-American (E)  0

9  3.3  Conference USA   1  27   – 3.0  SWAC   1

10  3.2  Big South (S)   1  28   – 3.0  Ohio Valley (W)   0

11  2.6  Mountain West   2  29   – 3.2  Southland   1

12  2.2  West Coast   2  30   – 3.4  MEAC   1

13  0.9  SEC   3  31   – 3.5  Patriot League   1

14  0.8  Horizon League   1  32   – 4.0  WAC   1

15  0.5  Missouri Valley   1  33   – 4.2  MAAC   1

16  0.3  Mid-American (W)   1  34   – 4.4  Atlantic Sun   1

17  0.3  Big South (N)   0  35   – 7.7  America East   1

18    0.2    Big West    1     –      –      –      –   

   For each conference, we show the value of the metric that we use to produce the ranking, and the number of teams that entered the March 

Madness Tournament for that conference.   

under different initializations to alleviate the sensibility 

of the variational algorithm to its starting point.  

4.2    Results for 2014 tournament 

  Exploratory analysis . One of the benefits of a generative 

model is that, instead of a black-box approach, it provides 

an explanation of the results. Furthermore, generative 

models allow integrating the information from experts 

in sports as prior knowledge in the Bayesian generative 

model. This would constrain the statistical model and 

may provide more accurate predictions and usable infor-

mation to help understand the teams performance. 

 We found that the expected value of the home coef-

ficient is   [ ] 1.03γ =E  (we obtained this value after averag-

ing the results for 100 independent runs for a model with 

 K  
1
   =   K  

2
   =  10, being the standard deviation around 5×10  – 4 ). 

This indicates that playing at home provides some advan-

tage, but this advantage is not as relevant as in soccer, 

where the home coefficient is typically around 1.4 ( Dixon 

and Coles 1997 ). 

 We can also use our generative model to rank confer-

ences and provide a qualitative measure on how well it 

follows general appreciation. Although there are several 

ways for ranking, we have taken a simple approach. For a 

model with  K  
1
   =  10 and  K  

2
   =  10 we have ranked the 

 conferences according to   2
, ,1

( [ ] [ ] ),
K

k kk
η ρ

=
−∑ � �E E  with 

expectations taken with respect to the variational dis-

tribution. In  Table 1   we show the obtained ranking, 

together with the number of teams for each conference 

that entered the March Madness Tournament. The top-5 

conferences (Pac-12, Big Ten, ACC, Big 12 and Atlantic 10) 

are the stronger ones, as they contribute with six or seven 

teams to the Tournament. There are two conferences that 

contribute with four teams (Big East and American) and 

they are ranked 7th and 8th. There are three conferences 

(Mountain West, West Coast and SEC) that contribute with 

two or three teams and they are ranked 11th – 13th. There 

are only three conferences that contribute with only the 

conference winner and that are stronger than the second 

tier conferences (those with two to four teams in the Tour-

nament). There are also three conferences (Big South, 

Mid-American and Ohio Valley) that we divide into two 

sub-conferences, but they only contribute with one team 

to the tournament. The sub-conference that contributed 

with a team to the tournament is always ranked higher 

with our score. 

 We also provide some qualitative results about 

the team-level parameters. For the model above with 

 K  
1
   =   K  

2
   =  10, we rank teams according to the value 

of   1 2
, , ( ), ( ),=1 =1

[ ] [ ].
K K

t k t k t k t kk k
α β η ρ− + −∑ ∑ � �E E  We show in 

 Table 2   the top-64 teams of the obtained ranking. Out of 

the 36 teams that entered the tournament as  “ at large ”  

bids, 34 of them are placed on the top-60 positions of the 

ranking. The two other teams are Tennessee, which is 
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6      F.J.R. Ruiz and F. Perez-Cruz: A generative model for predicting outcomes in college basketball

 Table 2      Ranking of teams provided by our model (only shown top-64 teams).  

 #     Value    Team     #     Value    Team     #     Value    Team     #     Value    Team  

1  12.7  Arizona   17  8.3  Arizona State   33  7.3  Connecticut   49  6.2  Butler

2  12.0  Iowa   18  8.3  Dayton   34  7.2  St Louis   50  6.1  Cincinnati

3  11.4  Michigan State   19  8.2  St Bonaventure   35  7.2  Wichita State   51  6.0  Texas Tech

4  10.5  Ohio State   20  8.1  Colorado   36  7.1  Indiana   52  5.9  Massachusetts

5  10.3  Louisville   21  8.1  North Carolina   37  7.1  Nebraska   53  5.9  Southern Methodist

6  9.9  Michigan   22  8.0  Gonzaga   38  7.1  Texas   54  5.8  Georgetown

7  9.5  UCLA   23  7.9  Oklahoma   39  7.1  Iowa State   55  5.8  Xavier

8  9.5  Villanova   24  7.9  Syracuse   40  7.0  Memphis   56  5.8  Clemson

9  9.4  Utah   25  7.9  Baylor   41  7.0  Virginia Commonwealth  57  5.7  New Mexico

10  9.4  Pittsburgh   26  7.8  Purdue   42  6.8  Arkansas   58  5.6  San Diego State

11  9.2  Creighton   27  7.7  Providence   43  6.5  Florida State   59  5.6  Kansas State

12  9.0  Wisconsin   28  7.7  Stanford   44  6.5  Florida   60  5.6  St John ’ s

13  8.7  Minnesota   29  7.6  Duke   45  6.4  Kentucky   61  5.3  Tennessee

14  8.6  Kansas   30  7.6  Oregon   46  6.4  Brigham Young   62  5.2  Boise State

15  8.6  California   31  7.4  Middle Tennessee State  47  6.3  George Washington   63  5.2  Virginia

16    8.5    Oklahoma State    32    7.4    Illinois    48    6.2    Tulsa    64    5.2    Maryland  

   The column  “ value ”  corresponds to the metric that we use to produce the ranking.   

ranked  # 61, and North Carolina State, ranked  # 78. Out of 

the 32 teams that entered the Tournament as  “ automatic 

bids ”  (i.e., teams winning their conference tournaments), 

half of them are placed on the top-100 positions, while 

the rest are ranked up to position  # 280 (for Texas South-

ern). In addition, for nine out of the 10 conferences that 

contribute with more than one team to the March Madness 

competition, the conference winner is also listed in Table 

2 (top-64 positions), and 44 out of the 46 teams of these 10 

conferences that entered the Tournament are also in that 

list. The two teams that do not appear in the top-64 posi-

tions are St Joseph ’ s (winner of the Atlantic 10 conference) 

and North Carolina State, which entered the competition 

in the pre-round. St Joseph ’ s was the play-off winner at 

the Atlantic 10 conference, but it had a poor record in that 

conference, which explains why its rating is not that high 

with out score. Regarding the teams in the March Madness 

competition belonging to the weaker conferences (i.e., 

those conferences that only contribute with one team to 

the Tournament), only two out of 22 teams are in the top-64 

positions. Qualitatively, our results coincide with the way 

teams are selected for the tournament. 

 If we focus on Pac-12 conference, the six teams that 

entered the competition are placed in positions  # 1,  # 7,  # 17, 

 # 20,  # 28 and  # 30 of Table 2 (for Arizona, UCLA, Arizona 

State, Colorado, Stanford and Oregon, respectively), and 

the conference winner was UCLA, which is the second of 

the six teams. This is not a contradiction, because it is the 

number of won games in the conference tournament what 

determines the conference winner, while our model takes 

into account all the games and the score of each game as 

input. Under our ranking, a team that loses a few games 

by a small difference and win many games by a large dif-

ference will be better placed than a team that wins all the 

games by a small margin. 

 Finally, our model has the ability to provide pre-

dictions for the expected results in each game, since 

we directly model the number of points. We include in 

 Table 3   a subset of the games in the March Madness com-

petition, together with their results, our predictions, and 

the 90% credible intervals (the rest of the games of the 

Tournament are shown in Appendix C). The predictions 

have been obtained after averaging the expected Poisson 

means   [ ]H
myE  and   [ ]A

myE  for 100 independent runs, 

using a model with  K  
1
   =   K  

2
   =  10. Out of the 126 scores, 21 

of them are outside the 90% credible interval, which is a 

bit high but not unheard of. What might be more surpris-

ing is that 17 out of these 21 scores are below the credible 

interval and only four of them above the credible inter-

val. There are several explanations for this effect. The 

most plausible is that we train the model with the regular 

season results but predict Tournament games instead. 

In regular season games, losing a game is not the end 

of the world, but losing a Tournament game has greater 

importance. Hence, players, which are young college stu-

dents, might feel some additional pressure and it should 

be unsurprising that teams tend to score less than in the 

regular season. Nevertheless, we can still say that this is 

only a minor effect and that the loss of performance due 

to pressure is not significant enough to make us state that 

a model trained for the regular season cannot be used for 

predicting the March Madness Tournament. 
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F.J.R. Ruiz and F. Perez-Cruz: A generative model for predicting outcomes in college basketball      7

  Quantitative analysis . To quantitavely evaluate our 

proposal, we report five solutions and compare them with 

the Kaggle competition winner and the implicit probabili-

ties of six online betting houses.  7     We use four models with 

a fixed value of  K  
1
  and  K  

2
 , but we also report the proba-

bilities obtained as the average of the predictions for 10 

different models, with  K  
1
  ranging between 4 and 10 and 

 K  
2
  ranging between 10 and 15. In Kaggle competition, our 

10-model average predictions led us to position   =  39 out of 

248. We first report the negative logarithmic loss, which is 

computed as in Kaggle competition as 

    

63

1

1
ˆ ˆLogLoss ( log( ) (1 ) log(1 ) ),

63 m m m m
m

ν ν ν ν
=

=− + − −∑  (9) 

 where   ν   
 m 

  ∈  { 0,1 }  indicates whether team  h ( m ) beats team 

 a ( m ), and   ν ∈ˆ [0,1]m  is the predicted probability of team 

 h ( m ) beating team  a ( m ). To be able to understand the 

variability in these results, we take 500 bootstrap samples 

( Efron 1979 ) and show the boxplot for these samples in 

 Figure 2  . We report the mean, the median, the 25/75% and 

the 10/90% percentiles, as well as the extreme values in 

the standard format. Note that  K  
1
   =  1,  K  

2
   =  0 corresponds 

to the classical model for soccer. We have included some 

markers for comparison: the best and 100th best results in 

the Kaggle competition, the median probability prediction 

for all Kaggle participants, the Kaggle seed benchmark (in 

which the winning probability predicted for the stronger 

team is 0.5 + 0.03*seed difference) and the 0.5-benchmark 

for all games and teams. In this figure, the boxplot for the 

winner of the Kaggle competition is lower than the boxplot 

for our models and the online betting houses. However, 

we found that the predictions of the Kaggle winner are 

not statistically different from our predictions, as reported 

by a Wilcoxon signed-rank test ( Wilcoxon 1945 ) with a 

 Table 3      List of a subset of the games in the 2014 tournament.  

   #    
 

Team 1   
 

Team 2  

Team    Result    Prediction (CI)  Team    Result    Prediction (CI)  

36  North Dakota State  44  61.4 (49 – 75)  San Diego State   63  71.7 (58 – 86)

37  Dayton   55  63.1 (50 – 76)  Syracuse   53  71.8 (58 – 86)

38  Oregon   77  76.9 (63 – 92)  Wisconsin   85  78.8 (64 – 94)

39  Harvard   73  67.7 (54 – 81)  Michigan State   80  76.1 (62 – 91)

40  Connecticut   77  62.5 (50 – 76)  Villanova   65  72.0 (58 – 86)

41  Kansas   57  80.8 (66 – 96)  Stanford   60  71.5 (58 – 86)

42  Wichita State   76  69.9 (56 – 84)  Kentucky   78  70.3 (57 – 84)

43  Iowa State   85  87.8 (73 – 103)  North Carolina   83  85.7 (71 – 101)

44  Tennessee   83  72.6 (59 – 87)  Mercer   63  65.0 (52 – 79)

45  UCLA   77  80.7 (66 – 96)  Stephen F. Austin  60  71.6 (58 – 86)

46  Creighton   55  70.9 (57 – 85)  Baylor   85  66.9 (54 – 81)

47  Virginia   78  66.8 (54 – 81)  Memphis   60  67.2 (54 – 81)

48  Arizona   84  75.4 (61 – 90)  Gonzaga   61  59.2 (47 – 72)

49  Stanford   72  71.9 (58 – 86)  Dayton   82  76.7 (63 – 91)

50  Wisconsin   69  68.3 (55 – 82)  Baylor   52  65.6 (53 – 79)

51  Florida   79  74.5 (61 – 89)  UCLA   68  74.8 (61 – 89)

52  Arizona   70  66.5 (53 – 80)  San Diego State   64  57.3 (45 – 70)

53  Michigan   73  70.8 (57 – 85)  Tennessee   71  63.1 (50 – 76)

54  Iowa State   76  79.8 (65 – 95)  Connecticut   81  73.5 (60 – 88)

55  Louisville   69  68.5 (55 – 82)  Kentucky   74  70.7 (57 – 85)

56  Virginia   59  64.9 (52 – 78)  Michigan State   61  73.1 (59 – 87)

57  Florida   62  69.2 (56 – 83)  Dayton   52  62.1 (49 – 75)

58  Arizona   63  70.0 (57 – 84)  Wisconsin   64  63.6 (51 – 77)

59  Michigan State   54  73.1 (59 – 87)  Connecticut   60  64.7 (52 – 78)

60  Michigan   72  73.3 (60 – 88)  Kentucky   75  70.8 (57 – 85)

61  Florida   53  64.7 (52 – 78)  Connecticut   63  62.4 (50 – 76)

62  Wisconsin   73  70.2 (57 – 84)  Kentucky   74  69.0 (56 – 83)

63    Connecticut    60    68.5 (55 – 82)    Kentucky    54    72.3 (59 – 87)  

   For each game and team, we show the actual outcome of the game, as well as the predicted mean value, together with the 90% credible 

interval (labeled as  “ CI ”  in the Table).   

  7   The implicit probabilities are computed from the published payoffs 

using a linear system of equations in which the implicit probability for 

each team is  p  
 i    =   Q /payoff 

 i   for  i   =   { 1, 2 }  and 1 –  Q  represents the margin 

the betting house keeps for risk management and profit. For example, 

if for a given game the payoff for both teams were  $ 2.85 and  $ 1.425, the 

implicit probabilities would, respectively, be 1/3 and 2/3 and  Q   =  0.95.  
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8      F.J.R. Ruiz and F. Perez-Cruz: A generative model for predicting outcomes in college basketball

significance level of 1%. Specifically, we found that the 

predictions by Kaggle winner are not statistically different 

when compared to our 10-model average predictions. Fur-

thermore, for 198 (out of 248) participants in the Kaggle 

competition, the Wilcoxon test failed to reject the null 

hypothesis (which corresponds to the median between 

the winner and the other participants being the same). 

This just indicates that the sample size is too small and we 

would need a larger test set to measure the goodness of fit 

of each proposal. 

 We now turn to a monetary metric that allows com-

paring our results with respect to the different betting 

houses. We assume that our probability estimates are the 

true ones and use Kelly ’ s criterion ( Kelly 1956 ) to decide 

how much we should bet (and for which team). Roughly, 

Kelly ’ s criterion tells that the amount that we should bet 

grows with the difference between our probabilities and 

the implicit probabilities of the betting houses, and that 

we should bet for the team for which this difference is 

positive.  8     If the probabilities are very similar or  Q  is very 

large then Kelly ’ s criterion might recommend not to bet. 

We have applied Kelly ’ s criterion for the 63 games in the 

Tournament assuming that we have  $ 1 per game. We 

could have aggregated the bankroll after each day or each 

weekend and bet more aggressively in the latter stages of 

the Tournament, but we believe that results with  $ 1 per 

game are easier to follow. In  Figure 3  , we show the boxplot 

representation of our profit in the six considered betting 

houses, as well as the profit of the Kaggle competition 

winner (again, we use 500 bootstrap samples). For all the 

methods, the mean and the median are positive and away 

from zero, but the differences are not significant and are 
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 Figure 2      Boxplot representation of logarithmic loss after bootstrap. From left to right, we depict results for the considered models, Kaggle 

winner ’ s estimates, and the six betting houses.    
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 Figure 3      Boxplot representation of profit after bootstrap, broken down by betting house.    

  8   Kelly ’ s criterion does not tell us to bet in favor of the team that we 

believe will win (higher predicted probability), but it tells us to bet 

for the team for which we will make more money in average, mak-

ing sure that we do not bankrupt. For example, if the betting house 

implicit probability is   0.8  for the stronger team and our model con-

siders this probability is   0.7  Kelly ’ s criterion will say that we should 

bet for the weaker team, because in a repeated game this strategy 

delivers the largest growth of the bankroll.  
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not significant amongst them (according to a Wilcoxon 

signed-rank test). The mean of our 10-model average 

and the mean of the  K  
1
   =   K  

2
   =  10 model are larger than the 

mean of the Kaggle competition winner for all the betting 

houses. Our variance is larger because our model points 

towards a high variance strategy, in which we tend to bet 

for the underdog (see next paragraph). Also, the probabil-

ities given by our model are more dissimilar than Kaggle 

winner ’ s when compared to the betting houses and, as a 

consequence, we bet in more games and larger quantities, 

as detailed below. However, we would require a (much) 

larger number of test games to properly analyze the dif-

ferences between both models, if they actually exist. Over 

the 63 tournament games we can state that the Kaggle 

competition winner follows a lower risk strategy, while 

our model points towards a higher risk strategy. 

 The contradiction between this monetary metric and 

the negative logarithmic loss can be easily explained, 

because in betting it typically pays off to bet in favor of the 

underdog (if it is undervalued), and our model tends to 

provide less extreme probabilities compared to the proba-

bilities submitted by the winner of the Kaggle competition 

and the implicit probabilities of the betting houses. We 

end up betting in favor of the team with larger odds and 

we lose most of the bets, but when we win we recover from 

the losses. To illustrate this, we include  Table 4  , where we 

show the number of games in which we have won the bets 

that we have placed. For instance, for Pinnacle Sports we 

decide to bet on 60 games out of 63 (under our 10-model 

average predictions) and win 21 bets (about a third), while 

the winner of the Kaggle competition wins 29 bets out of 

44 (about two thirds). The winner of the Kaggle competi-

tion tends to bet for the favorite, winning a small amount 

that compensates the few losses. Additionally, we tend to 

bet more in each game: in average, we stake 14 cents per 

bet, while the average bet for the Kaggle winner is 9 cents 

(for Pinnacle Sports). This means that our probabilities are 

further than those of the winner of the Kaggle competition 

when compared to the betting houses probabilities. This is 

not a bad thing for betting, since we need a model that is 

not only accurate, but also provides different predictions 

than the implicit probabilities of the betting houses. The 

betting houses do not necessary need to predict the true 

probabilities of the event, but they need to predict what 

people think are the true probabilities (and are willing to 

bet on). A model that identifies weaker but undervalued 

teams has the potential to provide huge benefits. 

 Finally, we show in  Figure 4   the profit for each of the 

Kaggle participants after betting using Kelly ’ s criterion on 

the 63 games in the Tournament. The results are ordered 

 Table 4      Number of games in which we win, number of games in which we bet, and number of games for which we have available the book-

maker odds ( # Wins/ # Bets/ # Total).  

    (1,0)    (1,1)    (10,10)    (5,15)    10 M. Avg    Kaggle  # 1  

bet365   19/45/62  22/48/62  20/56/62  21/59/62  21/59/62  25/38/62

BetVictor   11/30/61  16/39/61  16/47/61  18/50/61  17/50/61  15/25/61

Pinnacle Sports   23/52/63  24/52/63  20/59/63  21/63/63  21/60/63  29/44/63

Unibet   15/37/62  19/44/62  19/53/62  20/57/62  20/56/62  23/38/62

William Hill   20/47/63  23/50/63  19/54/63  21/58/63  21/58/63  26/42/63

bwin    17/40/61    18/45/61    20/54/61    19/56/61    20/59/61    25/40/61  

   Rows contain the results for different bet houses, while columns represent different models or specific ( K  
1
 ,  K  

2
 ) configurations.   
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 Figure 4      Profit on Pinnacle Sports for all Kaggle participants (ordered according to their final score in Kaggle competition). Red markers 

show the results by Kaggle winner and our 10-model average.    

Brought to you by | Universidad Carlos III
Authenticated | franrruiz@tsc.uc3m.es author's copy

Download Date | 2/10/15 8:41 AM
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according to Kaggle leaderboard. The winner is repre-

sented by the first red dot and we are represented by the 

second red dot (the 39th dot overall). From this figure, 

we can see that the log-loss and the betting profits are 

related, but they are not a one to one mapping: 46 out of 

the first 50 participants have positive returns, and so do 

23 out of the second 50 participants, 13 out of the third 

50 participants, 13 out of the fourth 50 participants and 

only 7 of the last group of 54. This is easy to understand 

if we focus on participants with a positive return and a 

low negative log-loss score. These participants typically 

post over-confident predictions (close to 100% sure that a 

certain team will win), these predictions when wrong only 

give limited betting losses (at most  $ 1 in our comparison), 

but a nearly unbounded log-loss. We can see that some 

of these participants would have obtained big wins even 

though their predictions are over-confident. If this would 

have been the error measured in Kaggle,  9     we would have 

been ranked  # 17.   

5    Conclusions 
 In this paper, we have extended a simple soccer model for 

college basketball. Outcomes at each game are modeled 

as independent Poisson random variables whose means 

depend on the attack and defense coefficients of teams and 

conferences. Our conference-specific coefficients account 

for the overall behavior of each conference, while the per-

team coefficients provide more specific information about 

each team. Our vector-valued coefficients can capture dif-

ferent strategies of both teams and conferences. We have 

derived a variational inference algorithm to learn the attack 

and defense coefficients, and have applied this algorithm 

to four March Madness Tournaments. We compare our 

predictions for the 2014 Tournament to the recent Kaggle 

competition results and six online betting houses. Simula-

tions show that our model identifies weaker but underval-

ued teams, which results in a positive mean profit in all the 

considered betting houses. We also outperform the Kaggle 

competition winner in terms of mean profit.   

    Acknowledgments:  We thank Kaggle competition organ-

izers for providing us with the individual submissions of 

all the participants. Francisco J. R. Ruiz is supported by 

an FPU fellowship from the Spanish Ministry of Education 

(AP2010-5333). This work is also partially supported 

by Ministerio de Economía of Spain (projects ‘COMON-

SENS’, id. CSD2008-00010, and ‘ALCIT’, id. TEC2012-

38800-C03-01), by Comunidad de Madrid (project 

‘CASI-CAM-CM’, id. S2013/ICE-2845), and by the European 

Union 7th Framework Programme through the Marie Curie 

Initial Training Network ‘Machine Learning for Personal-

ized Medicine’ (MLPM2012, Grant No. 316861).  

   Appendix A 

  A Variational Update Equations  

 In this section, we provide further details on the vari-

ational inference algorithm detailed in Section 3. Here, we 

denote by   1 1 ( )H A
m mφφ φ  the  K  

1
 -vector composed of the first 

 K  
1
  elements of    ( ),H A

m mφφ φ  and by   2 2 ( )H A
m mφφ φ  the  K  

2
 -vector 

composed of the remaining  K  
2
  elements. We show below 

the update equations for all the variational parameters, 

which are needed for the coordinate ascent algorithm:

1.    For the home coefficient   γ  , the updates are given by 

    
γ

γ
=

= +∑shp

1

,
M

H
m

m
s y

 
(10)

 

    rte

( ) ( ) ( ( )) ( ( ))
=1

[ ] ,
M

h m a m h m a m
m

r
γ

γ = + +∑ � �αα β η ρ� �E  (11) 

  where we denote by   [ ]⋅E  the expectation with respect 

to the distribution  q .  

2.   For the team attack and defense parameters   α   
 t, k 

  and 

  β   
 t, k 

 , we obtain 

    
α

α φ φ
= =

= + +∑ ∑shp 1 1

, , ,
: ( ) : ( )

,H H A A
t k m k m m k m

m h m t m a m t
s y y  (12) 

    rte

, ( ), ( ),
: ( ) : ( )

[ ] [ ] [ ] ,t k a m k h m k
m h m t m a m t

r
α

α γ β β
= =

= + +∑ ∑E E E  (13) 

    
β

β φ φ
= =

= + +∑ ∑shp 1 1

, , ,
: ( ) : ( )

,H H A A
t k m k m m k m

m a m t m h m t
s y y  (14) 

    
, ( ), ( ),

: ( ) : ( )

[ ] [ ] [ ].rte
t k h m k a m k

m a m t m h m t
r

β
β γ α α

= =

= + +∑ ∑E E E  (15)  

3.   For the conference attack and defense parameters   η   
 l, k 

  

and   ρ   
 l, k 

 , the updates are 

    
η

η φ φ
= =

= + +∑ ∑
� �

shp 2 2

, , ,
: ( ( )) : ( ( ))

,H H A A
l k m k m m k m

m h m l m a m l
s y y  (16) 

    

, ( ( )),
: ( ( ))

( ( )),
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[ ] [ ]

[ ] ,

rte
l k a m k

m h m l

h m k
m a m l

r
η

η γ ρ

ρ
=

=

= +

+

∑
∑

�
�

�
�

E E

E  (17) 

  9   We do not advocate for a change in error measure. Log-loss is more 

robust and a better indicator, but for a competition we either need 

more test cases or a statistical test to tell if the winner is significantly 

better than the other participants.  
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4.   For the multinomial probabilities of the auxiliary vari-

ables, we obtain 

    1

, ( ), ( ),
exp{ [log ] [log ] [log ]},H

m k h m k a m kφ γ α β∝ + +E E E  (20) 
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, ( ( )),
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exp{ [log ] [log ]

[log ]},

H
m k h m k

a m k

φ γ η

ρ

∝ +
+

�

�

E E
E  (21) 

    
1

, ( ), ( ),
exp{ [log ] [log ]},A

m k a m k h m kφ α β∝ +E E  (22) 

    
2

, ( ( )), ( ( )),
exp{ [log ] [log ]},A

m k a m k h m kφ η ρ∝ +� �E E  (23) 

  where the proportionality constants ensure that   H
mφφ  

and   A
mφφ  are probability vectors.    

 All expectations above can be written in closed form, since 

for a random variable  X ∼  gamma ( s, r ), we have   =[ ] /X s rE  

and   ψ= −[log ] ( ) log( ),X s rE  being   ψ  ( · ) the digamma func-

tion ( Abramowitz and Stegun 1972 ). 

  B Results for 2011 – 2014 Tournaments  

 We now provide some additional results including the 

2011 – 2014 tournaments. In  Figure 5  , we plot the nor-

malized histogram corresponding to the proportion of 

observed events for which the predicted probabilities are 

comprised between the values in the x-axis, across the 

four considered Tournaments, for several models. The 

legend indicates the corresponding values of  K  
1
  and  K  

2
 . In 

the figure, we can see that, as the predicted probability 

increases, so does the proportion of observed events. 

  Figure 6   shows a boxplot representation (after 500 

bootstrap samples) of the negative logarithmic loss for 

each of the considered season. Here, we can see that 2011 

Tournament yielded more unexpected results than in 2014. 

  Figure 7   shows the average profit we make in all the 

bet houses after adding together the profit (or loss) for 

each individual season.  Figures 8   – 10   show the boxplot 

representation (after 500 bootstrap samples) for each 
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 Figure 5      Proportion of observed events for which the predicted probabilities are comprised between the values in the x-axis, across the 

four considered seasons.    
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 Figure 6      Boxplot representation of logarithmic loss after bootstrap, broken down by season.    
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 Figure 9      Boxplot representation of profit after bootstrap for season 2011/2012, broken down by house.    
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 Figure 10      Boxplot representation of profit after bootstrap for season 2012/2013, broken down by house.    
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 Figure 7      Profit broken down by house, across the four considered seasons.    
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 Figure 8      Boxplot representation of profit after bootstrap for season 2010/2011, broken down by house.    
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individual season (the plot for 2014 tournament is 

included in the main text). 

  C List of 2014 Tournament Games  

 We show in  Table 5   the list corresponding to the 35 games 

in the 2014 March Madness Tournament not shown in 

Table 3. For each game, we show the actual outcome of 

the game, as well as the predicted mean values and the 

90% credible intervals.   
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