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Introduction

Large-scale market basket data
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Why Analyzing Market Basket Data?

I Understand consumer behavior

I Make predictions about demand

I Predict response to promotions or price changes

I Form personalized recommendations
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Market Basket Data is Complex

Challenges:

I Many interrelated forces at play

I Some are unobserved

Example:

baby	items dog	items seasonal	fruits taco	ingredients
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Our Contribution

SHOPPER:

I A sequential probabilistic model of shopping baskets

I Interpretable components

I Captures user heterogeneity, seasonal effects, prices

I Forms predictions under price changes
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Our Contribution

SHOPPER:

I An efficient posterior inference algorithm

I Empirical study:

I Accurate predictions under price interventions

I Helps identify complements and substitutes
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Model: Items Are Chosen Sequentially

I Customer walks into the store and chooses item sequentially

I At each step, chooses over items that are not in the basket

I The sequence ends when customer chooses the “checkout item”
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Model: Unobserved Item/User Attributes

I The probability of choosing an item depends on latent factors

I Item attributes: αc ∈ RK

I User preferences: θu ∈ RK

I The inner product θ>u αc determines the probability
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SHOPPER: Vanilla Version

I Item interaction coefficients: ρc ∈ RK

I Define a utility for each item c at each step i in trip t

I The (mean) utility depends on previously chosen items,

Ψ(c , yt,i−1︸ ︷︷ ︸
items in
basket

) = ψtc︸︷︷︸
user preferences:

θ>u αc

+ ρ>c

 1

i − 1

i−1∑
j=1

αytj


︸ ︷︷ ︸

item interactions

I In terms of probabilities,

p(yti = c | yt,i−1) =
exp{Ψ(c , yt,i−1)}∑

c′ 6∈yt,i−1
exp{Ψ(c ′, yt,i−1)
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Baskets as Unordered Set of Items

I Probability of an ordered basket (product of individual choices),

p(yt | ρ, α, θ) =
nt∏
i=1

p(yti | yt,i−1, ρ, α, θ)

I When the ordering is not observed, sum over all possible orderings

p(Yt | ρ, α, θ) =
∑
π

p(yt,π | ρ, α, θ)
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Item Attributes Capture Meaningful Representations

pie filling

baking additives

baking ingredients

extracts

shortening

evaporated milk

condensed milk

corn meal

flour

granulated sugar

brown sugar

powdered sugar

frozen pastry dough

(Zoom on 2D projection of item space αc )
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Price and Seasonal Effects are Additive Components

Ψ(c , yt,i−1︸ ︷︷ ︸
items in
basket

) = ψtc︸︷︷︸
baseline

+ ρ>c

 1

i − 1

i−1∑
j=1

αytj


︸ ︷︷ ︸

item interactions

I So far, the baseline captures customer preferences,

ψtc = θ>u αc

I We include extra terms,

ψtc = λc︸︷︷︸
intercept

+ θ>u αc︸ ︷︷ ︸
user

preferences

− γ>u βc︸ ︷︷ ︸
price

sensitivity

· log(rtc)︸ ︷︷ ︸
normalized
log-price

+ δ>w µc︸ ︷︷ ︸
seasonal
effects
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Price and Seasonal Effects are Additive Components

ψtc = λc︸︷︷︸
intercept

+ θ>u αc︸ ︷︷ ︸
user

preferences

− γ>u βc︸ ︷︷ ︸
price

sensitivity

· log(rtc)︸ ︷︷ ︸
normalized
log-price

+ δ>w µc︸ ︷︷ ︸
seasonal
effects

I Price sensitivities are factorized (user/item factorization)

- Normalized price
- We constrain γu and βc to be positive =⇒ Negative elasticities

I Seasonal effects are factorized (week/item factorization)
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Thinking One-Step Ahead

I Customers consider step i + 1 when making the decision about step i

I This allows capturing complementarity (details on next slide)

I Mathematically,

Ψ(c , yt,i−1) =ψtc + ρ>c

 1

i − 1

i−1∑
j=1

αytj


+ max

c′ 6∈[yt,i−1,c]

ψtc′ + ρ>c′

1

i

αc +
i−1∑
j=1

αytj



14



Illustrative Simulation

Consider the following world:

I There are 8 items:
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Illustrative Simulation

purchased items: diapers, hot dogs, hot dog buns, checkout16 F. RUIZ ET AL.

stage 1: diapers stage 2: hot dogs stage 3: hot dog buns stage 4: checkout

no
n

th
in

k-
ah

ea
d

diapers 0:31 0:00 0:00 0:00
co�ee (") 0:03 0:02 0:05 0:21
ramen 0:00 0:00 0:00 0:00
candy 0:00 0:00 0:00 0:00
hot dogs 0:18 0:25 0:00 0:00
hot dog buns 0:17 0:25 0:79 0:00
taco shells (") 0:14 0:19 0:00 0:00
taco seasoning 0:17 0:24 0:00 0:00
checkout 0:00 0:05 0:16 0:79

th
in

k-
ah

ea
d

diapers 0:37 0:00 0:00 0:00
co�ee (") 0:02 0:02 0:07 0:10
ramen 0:00 0:00 0:00 0:00
candy 0:00 0:00 0:00 0:00
hot dogs 0:24 0:34 0:00 0:00
hot dog buns 0:24 0:42 0:85 0:00
taco shells (") 0:06 0:10 0:00 0:00
taco seasoning 0:06 0:10 0:00 0:00
checkout 0:00 0:02 0:08 0:90

T���� �
An example of the predicted probabilities for a new parent customer in the toy simulation, for a basket
that contains diapers, hot dogs, and hot dog buns. (Top) Model without the thinking-ahead property.
(Bottom) Model with the thinking-ahead property. In the table, each column represents a step in the
sequential process, and the numbers denote the probability of purchasing each item. We have marked

with bold font the items purchased at each step. The arrows pointing up for co�ee and taco shells
indicate that these items have high price in this shopping trip. The thinking-ahead model provides
higher predictive log-likelihood, because it can capture the joint distribution of pairs of items: it

correctly assigns lower probability to taco seasoning at each step, because taco shells have high price.

Now consider the complementary pairs. In the model without thinking ahead, the
customer has high probability of buying hot dogs, hot dog buns, and taco seasoning;
because of its high price, she has a low probability of buying taco shells. But this
is incorrect. Knowing that the price of taco shells is high, she should have a lower
probability of buying taco seasoning because it is only useful to buy along with taco
shells. The thinking-ahead model captures this, giving both taco seasoning and taco
shells a low probability.

Subsequent stages further illustrate the intuitions behind �������. First, each stage
zeros out the items that are already in the basket (e.g., at stage 2, diapers have
probability 0). Second, once one item of the complementary pair is bought, the
probability of the other half of the pair increases and the probabilities of the alternative
pair becomes low. In this case, once the customer buys hot dogs, the probability of
the taco products goes to zero and the probability of hot dog buns increases.

As a final demonstration on simulated data, we generate a test set from the simulator
with 30 shopping trips for each customer. On this test set, we “intervene” on the price
distribution: the probability of a preference item having a high price is 0:95 and one
of the four complementary items always has a high price. On this test set, a better
model will provide higher held-out log probability and we confirm that thinking
ahead helps. The thinking-ahead model gives an average held out log probability of
�2:26; the model without thinking ahead gives an average held out log probability
of �2:79.
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Model Estimation: Bayesian Inference

I Prior on latent variables p(`) (Gaussian+Gamma)

I Latent variables `: user preferences θu, item attributes αc , item
intercepts λc , item interaction coefficients ρc , seasonal effect
parameters δw and µc , price sensitivity parameters γu and βc

I Posterior of latent variables given data,

p(` | Y, x) =
p(`)

∏T
t=1 p(Yt | `, xt)
p(Y | x)
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Variational Inference Approximates the Posterior

I Approximate the posterior p(` | Y, x)

I Variational inference

I Introduce an approximating distribution q(`) over the latent variables

I Find q(`) by minimizing the KL divergence to the exact posterior
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Variational Inference as an Optimization Problem

I Parameterized family of distributions qν(`)

I Minimizing the KL ≡ Maximizing the ELBO

L(ν) = Eq(`;ν) [log p(`,Y | x)− log q(`; ν)]

I Solve the optimization problem w.r.t. ν

ν? = arg max
ν
L(ν)

19



A Sketch on the Variational Inference Algorithm

I Gradient-based stochastic optimization w.r.t. ν

- Large datasets
- Intractable expectations

I Variational bounds on the ELBO

- Unordered baskets
- Large number of items

20



The Dataset in Numbers

I 97 (unique) weeks of shopping data from a large grocery store

- 570K baskets
- 6M purchases
- 5.5K unique items
- 3K customers

I Split into training, test, validation

- Training: Weeks 1-88
- Test: Weeks 89-97
- Validation: 5% of training

21



Models we Compare

Comparisons:

- Exponential family embeddings

- Hierarchical Poisson factorization

- (Multinomial logistic regression / Factor analysis)

20 F. RUIZ ET AL.

Model Data User Item-to-item Price Seasonal
preferences interactions e�ects

B-Emb (Rudolph et al., 2016) Binary ⇥ X ⇥ ⇥
P-Emb (Rudolph et al., 2016) Count ⇥ X ⇥ ⇥

��� (Gopalan, Hofman and Blei, 2015) Count X ⇥ ⇥ ⇥
������� (this paper) Binary X X X X

T���� �
We compare properties of ������� to existing models of consumer behavior. Bernoulli embeddings

(B-Emb) and Poisson embeddings (P-Emb) only model in-basket item-to-item interactions; ���
factorizes the user/item matrix. ������� models both types of regularity and additionally adjusts for

price and seasonal e�ects.

two months of data).11

6.1.1. Quantitative results. We fit each model to the category-level data. In ����-
��� we set most of the Gaussian hyperparameters to zero mean and unit variance.
(The seasonal e�ect hyperparameters have a smaller variance, 0.01, because we do
not expect large seasonal e�ects.) The price sensitivity parameters have Gamma
priors; we use a shape of 1 and a rate of 10. As for the comparison models, we modify
��� to allow for multiple shopping trips of the same user; in its original construction
it can only capture a single trip. Finally, we implement two versions of exponential
family embeddings, Bernoulli embeddings for binary data (labeled “B-Emb”) and
Poisson embeddings for count data (labeled “P-Emb”). We weight the zeros by a
factor of 0:1, as suggested by Rudolph et al. (2016). For all methods, we use the
validation set to assess convergence.

To choose the number of latent factors K, we first set the number of factors of the
price and seasonal vectors to 10 and run ������� with K 2 f10; 20; 50; 100; 200g.
We choose the value K D 100 because it provides the best predictions on the vali-
dation set. For that value of K, we then explore the number of latent factors for the
price and seasonal vectors in the set f5; 10; 20; 50g, finally choosing 10. We also set
K D 100 for ��� and exponential family embeddings.

To evaluate the models, we calculate the average log-likelihood of the test-set items.
For each, we calculate its probability conditioned on the other observed items in
the basket. Higher log probability indicates a better model fit. Table 3 shows the
results. The numbers in parentheses show the standard deviation, obtained by using
bootstrap on the test samples.

We study several types of test sets. The second column corresponds to a typical
test set, containing two months of data. Columns 3-5 focus on skewed test sets,
where the target items have more extreme prices with respect to their average price
within each month (outside of the range ˙2:5%, ˙5%, and ˙15%). To control for
seasonal effects, we consider items whose price is outside that range with respect to
the per-month average price. These evaluations are suggestive of the performance
under price intervention, i.e., where the distribution of price is di�erent in testing

11On the validation set, the multinomial logistic regression model performed slightly better than
exponential family embeddings but worse than ���. We emphasize that multinomial logistic regression
takes the item prices as inputs, in contrast to exponential family embeddings and ���.
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Predictions on the Test Set

Predictive log-likelihood for category-level data:
SHOPPER: A PROBABILISTIC MODEL OF CONSUMER CHOICE 21

Model
Log-likelihood

All Price˙2:5% Price˙5% Price˙15%
(540K) (231K) (139K) (25K)

B-Emb (Rudolph et al., 2016) �5:119 (0:001) �5:119 (0:002) �5:148 (0:002) �5:250 (0:006)
P-Emb (Rudolph et al., 2016) �5:160 (0:001) �5:138 (0:002) �5:204 (0:002) �5:311 (0:005)

��� (Gopalan, Hofman and Blei, 2015) �4:914 (0:002) �4:931 (0:002) �4:994 (0:003) �5:061 (0:009)
������� (I+U) �4:744 (0:002) �4:743 (0:003) �4:776 (0:003) �4:82 (0:01)

������� (I+U+S) �4:730 (0:002) �4:778 (0:003) �4:801 (0:004) �4:83 (0:01)
������� (I+U+P) �4:728 (0:002) �4:753 (0:003) �4:747 (0:004) �4:69 (0:01)

������� (I+U+P+S) �4:724 (0:002) �4:741 (0:003) �4:774 (0:004) �4:64 (0:01)
T���� �

Average predictive log-likelihood on the test set, conditioning on the remaining items of each basket
(the numbers in parentheses indicate standard deviation). ������� with user preferences improves
over the existing models. The improvement grows when adjusting for price and seasonal effects, and

especially so when using skewed test sets that emulate price intervention.

Model Number of latent parameters
per user per item per week total

B-Emb (Rudolph et al., 2016) � 200 � 74;800
P-Emb (Rudolph et al., 2016) � 200 � 74;800

��� (Gopalan, Hofman and Blei, 2015) 100 100 � 358;000
������� (I+U) 100 201 � 395;975

������� (I+U+S) 100 211 10 400;615
������� (I+U+P) 110 211 � 431;785

������� (I+U+P+S) 110 221 10 432;685

T���� �
Number of latent parameters for each of the considered models.

than it is in training. The numbers in parentheses on the table heading indicate the
number of purchases considered in each column.

We report results that incrementally add terms to the basic ������� model. The
most basic model contains user information with item-to-item interactions (“I+U”);
it improves predictions over the competing models. The next model includes sea-
sonal effects (“I+U+S”); it improves performance on the typical test set only.12 We
also consider a model that includes price sensitivity (“I+U+P”); it further improves
performance. The full model adds seasonal e�ects (“I+U+P+S”); in general it gives
the best performance. As expected, modeling price elasticity is important in making
counterfactual predictions. The performance gap between the models with and
without price increases as the test-set prices diverge from their average values.

Table 3 compares models with different numbers of latent parameters. (Table 4 gives
the number of latent parameters in each model.) Exponential family embeddings
posit two K-length vectors for each item. ��� has one K-length vector for each
user and item. ������� has one K-length vector for each user and two K-length
vectors for each item, in addition to the intercept terms and the price and seasonal
components.

Finally, we study the empirical performance of “thinking ahead,” particularly when
predicting groups of items. Table 5 shows two metrics: the first column is the average
(per-item) test log-likelihood over three items, conditioned on the rest of items in

12To compute predictions for the models with seasonal effects, we set the seasonal parameter ıw for
the weeks in the test set equal to the value of ıw corresponding to the same week but the year before.
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Predictions on the Test Set

Predictive log-likelihood for category-level data:
22 F. RUIZ ET AL.

Three items Entire baskets

Non think-ahead �4:795 (0:005) �4:96 (0:02)
Think-ahead �4:747 (0:004) �4:91 (0:02)

T���� �
Average test log-likelihood per item, for the models with and without the thinking-ahead property.

(Left) Per-item average log-likelihood computed for triplets of items in each basket of size at least 3.
(Right) Per-item average log-likelihood on entire held-out baskets. The numbers in parentheses

indicate standard deviation of bootstrapped test baskets.

dog food wet (excluding super premium)
dog food snacks (exluding super premium)

super premium dog food

cat food wet (excluding super premium)
cat food dry/moist (excluding super premium)

cat litter & deodorant

pet supplies

wild bird food/treats/accessories

(a) Pet food and supplies.

bathroom tissue 1
bathroom tissue 2

paper towels

facial tissue

dish detergents

laundry pre−treatment

laundry detergent

toothpastebar soap

liquid hand soap

general purpose cleaners

specific purpose cleaners

specialty surface cleaners

scouring/sponge

refuse bags

(b) Cleaning and hygiene.

Figure 3: Two regions of the two-dimensional �-��� projection of the features vectors
˛c for the category-level experiment.

the basket; the second column is average (per-item) log-likelihood over the entire
basket. (Here we exclude the checkout item, and we compute the predictions based
on the ordering in which items are listed in the test set.) The model with “thinking
ahead” more correctly handles complements and price sensitivity, and it provides
better predictive performance.

6.1.2. Qualitative results. ������� provides a better predictive model of consumer
behavior. We now use the fitted model to qualitatively understand the data.

First, we assess the attributes vectors ˛c , confirming that they capture meaningful
dimensions of the items. (Recall that each is a 100-dimensional real-valued vector.)
As one demonstration, we project them on to 2-dimensional space using t-distributed
stochastic neighbor embedding (�-���) (van der Maaten and Hinton, 2008), and
then examine the items in di�erent regions of the projected space. Figure 3 shows
two particular regions: one collects di�erent types of pet food and supplies; the
other collects di�erent cleaning products. As a second demonstration, we can use
the cosine distance to find similar items similar to a “query item.” Table 6 shows the
top-three most similar items to a set of queries.

Other latent variables reveal di�erent aspects of consumer behavior. For example,
Table 7 show the highest and lowest seasonal e�ects for a set of items. The model
correctly captures how Haloween candy is more popular near Halloween; and turkey
is more popular near Thanksgiving. It also captures the seasonal availability of fruits,
e.g., cherries.
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Qualitative Results on Category-Level Data

Projected item features αc (two regions):

pie filling

baking additives

baking ingredients

extracts

shortening

evaporated milk

condensed milk

corn meal

flour

granulated sugar

brown sugar

powdered sugar

frozen pastry dough
bathroom tissue 1

bathroom tissue 2
paper towels

facial tissue

dish detergents

laundry pre−treatment

laundry detergent

toothpastebar soap

liquid hand soap

general purpose cleaners

specific purpose cleaners

specialty surface cleaners

scouring/sponge

refuse bags
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Qualitative Results on Category-Level Data

Item similarities (cosine distance in αc -space):
SHOPPER: A PROBABILISTIC MODEL OF CONSUMER CHOICE 23

mollusks organic vegetables granulated sugar cat food dry/moist

finfish all other - frozen organic fruits flour cat food wet
crustacean non-shrimp citrus baking ingredients cat litter & deodorant

shrimp family cooking vegetables brown sugar pet supplies
T���� �

Most similar items to a query item (given in the first row), according to the cosine distance between the
item features ˛c , for the category-level experiment.

Halloween candy cherries turkey - frozen

3:46 2006=10=25 3:07 2006=06=28 3:56 2005=11=16
3:34 2005=10=26 3:01 2006=07=12 3:30 2006=11=15
2:81 2005=10=19 2:85 2006=06=21 2:64 2005=11=23

:::
�1:28 2005=11=23 �3:59 2006=10=11 �1:25 2006=06=21
�1:31 2007=01=03 �3:89 2006=10=18 �1:29 2006=07=05
�1:33 2005=11=16 �4:54 2006=10=25 �1:30 2006=07=19

T���� �
Highest and lowest seasonal effects, as given by �>

c ıw , for three example items. The model finds the
effects of holidays such as Halloween or Thanksgiving, as well as the seasonal availability of fruits.

These investigations are on the category-level analysis. For more fine-grained quali-
tative assessments—especially those around complementarity and exchangeability—
we now turn to the ���-level model.

6.2. UPC-level data. We fit ������� to ���-level data, which contains 5,590
unique items. We use the same dimensionality of the latent vectors as in Section 6.1,
i.e., K D 100 for ˛c , ⇢c , and ✓u, and 10 latent features for the seasonal and price
vectors. We additionally tie the price vectors ˇc and seasonal e�ect vectors ıc to
all items in the same category. To speed up computation, we fit this model without
thinking ahead.

We can again find similar items to “query” items using the cosine distance between
attribute vectors ˛c . Table 8 shows similar items for several queries; the model
identifies qualitatively related items.

For another view, Figure 4a shows a two-dimensional �-��� projection (van der
Maaten and Hinton, 2008) of the attribute vectors. This figure colors the items
according to their group,13 and it reveals that items in the same category are often
close to each other in attribute space. When groups are mixed in a region, they tend
to be items that appear in similar contexts, e.g., hot dogs, ketchup, and hamburger
buns (Figure 4b).

6.2.1. Substitutes, complements and exchangeability metrics. A key objective for
applications of ������� is to be able to estimate interaction e�ects among products.
These e�ects are described by the coe�cients ⇢c and attributes ˛c . When ⇢>

c ˛c0

and ⇢>
c0˛c are large, this means that purchasing item c

0 increases the consumer’s
preference for c, and vice-versa. When these two terms are negative and large, the

13Groups are defined as one level of hierarchy above categories. Some examples of groups are
“jams, jellies, and spreads,” “salty snacks,” or “canned fruits.”
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Qualitative Results on Category-Level Data

Seasonal effects (product δ>w µc):

SHOPPER: A PROBABILISTIC MODEL OF CONSUMER CHOICE 23

mollusks organic vegetables granulated sugar cat food dry/moist

finfish all other - frozen organic fruits flour cat food wet
crustacean non-shrimp citrus baking ingredients cat litter & deodorant

shrimp family cooking vegetables brown sugar pet supplies
T���� �

Most similar items to a query item (given in the first row), according to the cosine distance between the
item features ˛c , for the category-level experiment.

Halloween candy cherries turkey - frozen

3:46 2006=10=25 3:07 2006=06=28 3:56 2005=11=16
3:34 2005=10=26 3:01 2006=07=12 3:30 2006=11=15
2:81 2005=10=19 2:85 2006=06=21 2:64 2005=11=23

:::
�1:28 2005=11=23 �3:59 2006=10=11 �1:25 2006=06=21
�1:31 2007=01=03 �3:89 2006=10=18 �1:29 2006=07=05
�1:33 2005=11=16 �4:54 2006=10=25 �1:30 2006=07=19

T���� �
Highest and lowest seasonal effects, as given by �>

c ıw , for three example items. The model finds the
effects of holidays such as Halloween or Thanksgiving, as well as the seasonal availability of fruits.

These investigations are on the category-level analysis. For more fine-grained quali-
tative assessments—especially those around complementarity and exchangeability—
we now turn to the ���-level model.

6.2. UPC-level data. We fit ������� to ���-level data, which contains 5,590
unique items. We use the same dimensionality of the latent vectors as in Section 6.1,
i.e., K D 100 for ˛c , ⇢c , and ✓u, and 10 latent features for the seasonal and price
vectors. We additionally tie the price vectors ˇc and seasonal e�ect vectors ıc to
all items in the same category. To speed up computation, we fit this model without
thinking ahead.

We can again find similar items to “query” items using the cosine distance between
attribute vectors ˛c . Table 8 shows similar items for several queries; the model
identifies qualitatively related items.

For another view, Figure 4a shows a two-dimensional �-��� projection (van der
Maaten and Hinton, 2008) of the attribute vectors. This figure colors the items
according to their group,13 and it reveals that items in the same category are often
close to each other in attribute space. When groups are mixed in a region, they tend
to be items that appear in similar contexts, e.g., hot dogs, ketchup, and hamburger
buns (Figure 4b).

6.2.1. Substitutes, complements and exchangeability metrics. A key objective for
applications of ������� is to be able to estimate interaction e�ects among products.
These e�ects are described by the coe�cients ⇢c and attributes ˛c . When ⇢>

c ˛c0

and ⇢>
c0˛c are large, this means that purchasing item c

0 increases the consumer’s
preference for c, and vice-versa. When these two terms are negative and large, the

13Groups are defined as one level of hierarchy above categories. Some examples of groups are
“jams, jellies, and spreads,” “salty snacks,” or “canned fruits.”
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Qualitative Results on UPC-Level Data

Projected item features αc :
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Qualitative Results on UPC-Level Data

Projected item features αc :
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Qualitative Results on UPC-Level Data

Projected item features αc (zoom):

kraft cheese  sharp 2% milk singles

potato salad classic 3 lb

private brand hotdog buns potato
private brand hot dog buns potato

private brand ckn strips crispy

cheetos cheese snack crunchy 2

fritos corn chips regular 1
fritos corn chips scoops 2

fritos corn chips regular 2

fritos corn chips scoops 1

tostitos scoops tortilla chips super sz

ruffles potato chips original

lays potato chips classic 1
lays potato chips wavy original

ruffles pot chps original family size

fritos corn chips original
fritos corn chips scoops 3

lays potato chips classic 2 lays potato chips original wavy

cheetos cheese snacks crunchy 1

coca cola classic soda frdg pk
sprite soda fridge pack

coca cola soda cherry fridge pack

coca cola soda classic fridge pack btl

ball park buns hot dog

bp franks meat
bp franks beef

bp franks bun size
bp franks beef bun length

sara lee hot dog buns gourmet

oroweat hot dog buns country white

7up soda cool pack

dr pepper soda fridge pack

29



Complements and Substitutes

I Complementarity metric,

Ccc′ ,
1

2

(
ρ>c αc′ + ρ>c′αc

)
I Exchangeability metric,

Ecc′ ,
1

2

(
DKL

(
p·|c || p·|c′

)
+ DKL

(
p·|c′ || p·|c

))
=

1

2

∑
k 6=c,c′

(
pk|c log

pk|c
pk|c′

+ pk|c′ log
pk|c′

pk|c

)
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Complements and Substitutes on UPC-Level Data

Complementarity and exchangeability metrics:
26 F. RUIZ ET AL.

query items complementarity score exchangeability score

mission tortilla
soft taco 1

2:40 taco bell taco seasoning mix 0:05 mission fajita size
2:26 mcrmck seasoning mix taco 0:07 mission tortilla soft taco 2
2:24 lawrys taco seasoning mix 0:13 mission tortilla flu�y gordita

private brand
hot dog buns

2:99 bp franks meat 0:11 ball park buns hot dog
2:63 bp franks bun size 0:13 private brand hotdog buns potato 1
2:37 bp franks beed bun length 0:15 private brand hotdog buns potato 2

private brand mustard
squeeze bottle

0:50 private brand hot dog buns 0:15 frenchs mustard classic yellow squeeze
0:41 private brand cutlery full size forks 0:16 frenchs mustard classic yellow squeezed
0:24 best foods mayonnaise squeeze 0:21 heinz ketchup squeeze bottle

private brand napkins
all occasion

0:78 private brand selection plates 6 7/8 in 0:09 vnty fair napkins all occasion 1
0:50 private brand selection plates 8 3/4 in 0:11 vnty fair napkins all occasion 2
0:49 private brand cutlery full size forks 0:12 private brand selection premium napkins

T���� �
Items with the highest complementarity and lowest exchangeability metrics for some query items.

and marketing usually considers two or three products (Berry et al., 2014), �������
enables considering choices among thousands of products that potentially interact
with one another. Using supermarket shopping data, we show that ������� can
uncover these relationships.

There are several avenues for future work. Consider the question of how the probabilis-
tic model relates to maximizing a consumer’s utility of the entire basket. Section 3.1.2
introduced a heuristic model of consumer behavior that is consistent with the proba-
bilistic model. This heuristic lends itself to computational tractability; it enables us
to analyze datasets of baskets that involve thousands of products and thousands of
consumers. But the heuristic also involves a fairly myopic consumer. In future work,
it is interesting to consider alternative heuristic models.

Another avenue is to embellish the distribution of baskets. One way is to expand the
model to capture within-basket heterogeneity. Shopping trips may reflect a collection
of needs, such as school lunches, a dinner party, and pet care, and items may interact
with other items within each need. Capturing the heterogenous patterns within the
baskets would sharpen the estimated interactions. Another embellishment is to ex-
pand the model of baskets to include a budget. A budget imposes constraints on the
number of items (or their total price) purchased in a single trip.
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Conclusions

I SHOPPER: A probabilistic model of consumer behavior

I Posterior inference to estimate latent attributes

- Customer preferences
- Item attributes
- Item-item interactions
- Price sensitivities
- Seasonal effects

I Interpretable model

- Predictions under price interventions
- Find complements and substitutes

I Code publicly available1

1https://github.com/franrruiz/shopper-src
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Future work

I Other heuristics for utility maximization over entire baskets

I Within-basket heterogeneity

I Taste for variety

I Extensions of the thinking-ahead procedure
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Thank you for your attention!
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