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Introduction

Individuals with multiple coexisting diseases.

80% of US Medicare spending devoted to patients with 44 chronic
conditions.

Impact of comorbidity: mortality, quality of life, quality of health
care, ...

Psychiatry: etiological and treatment implications.
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Find out the latent relationship among psychiatric disorders.

Database

NESARC database (National Epidemiologic Survey on Alcohol and
Related Conditions):

@ Samples the U.S. population.

_

@ Around 3K questions and 43K subjects.

@ Mainly yes-or-no questions, and some multiple-choice and questions
with ordinal answers.

A\

Our approach

Latent feature modeling and Indian buffet process (IBP).
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Bayesian Nonparametrics

@ Unbounded number of degrees of freedom in a model.

e E.g., clustering with unknown number of clusters.
@ The posterior distribution chooses the complexity of the model to fit
the data.
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Bayesian Nonparametrics

@ Unbounded number of degrees of freedom in a model.

e E.g., clustering with unknown number of clusters.

@ The posterior distribution chooses the complexity of the model to fit
the data.

@ Applications (I've worked on / Would like to work on):

e Psychiatry.

Power disaggregation.

Recommendation systems.

Multiuser MIMO channel estimation.

Channel coding.

Sports.

NYC marathon modeling.

Higgs boson challenge?
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Buffet Process

Prior distribution over binary matrices.
Number of columns (features) K — oo.
Matrix Zyxx ~ IBP(«).

Finite N implies finite number of non-zero columns K.
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Observation Model

@ Each subject characterized by a binary vector of latent features.
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Observation Model

@ Each subject characterized by a binary vector of latent features.

@ Under Gaussian observations, features are weighted and added.
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Observation Model

@ Each subject characterized by a binary vector of latent features.

@ Under Gaussian observations, features are weighted and added.

Zn bd Tnd

?“ mo 11 - 1.2 ~1.05
3.2

Xpoor1 ] x —24 = 015
b 0.15

3 1001 - : 1.35

ZB + noise = X
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o Categorical observations: x,4 € {1,..., R} (‘Yes', ‘No’, ‘Unkown’,
‘Blank’, ...).

@ How to link latent features z,,. and observations?

Q

o<
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o Multiple-logistic (softmax) function:

p(xng = ‘ves’|zn.,bd, BY) oc exp ( z,,.b,dycs)7
p(Xnd = ./HOS|Zn~a bgv Bd) S8 exp( Z"'bio)’

exp ( z,b?)
R b
Z exp ( z, b))

r'=1

p(Xng = r|zn., b3, BY) = r=1,...,R.

@ The weighting factors are placed Gaussian priors.
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o Multiple-logistic (softmax) function:

d
-yes /)y

P(xng = ‘ves'|zn., b, BY) o exp (b, + zn.b
p(Xnd = ‘IlO’|Zn., b(c)l’ Bd) X exp (bgllo + zn‘b-cflo)7

exp (bgr + Zn'bfjr)
R )

Z exp (b, + z,.b%))

r'=1

p(Xnd = r|zn., b3, BY) = r=1,...,R.

@ The weighting factors are placed Gaussian priors.
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@ The model is not conditionally conjugate.

@ Posterior on the weighting factors:

Non G Non Gauss Gauss

on Gauss

g > _ p(x.4|B?, b, Z) p(BY)p(bF)
BY bd|X,Zz) = PXdZ - Do o)

p( 0‘ ) p(Xd|Z)

@ The integral in the denominator is intractable:

p(x.4|Z) :/p(x_d|Bd,bg7Z)p(Bd)p(bg)ddebg.
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Gibbs sampling

Gibbs sampling

@ lIteratively sample each element of the IBP matrix.

@ Integrate out all the weighting factors = Intractable.
@ Gaussian approximation of the posterior:

@ Laplace approximation.
© Expectation propagation.
@ Multinomial probit likelihood instead of softmax.
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Experiments on NESARC

Real data

@ Inputs: Diagnoses of 20 common psychiatric disorders.
@ Previous studies: Factor analysis.

o Specify the number of factors.
o Assume Gaussian observations.
o 3 latent factors seem enough.
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Experiments on NESARC

Extension of the model

@ Individual-specific severity terms:
p(xng = r|w,.,bd,BY) o< exp (b¢, + w, b%), r=1,...,R.

o Instead of on/off features, each term in [0, 1].
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@ Individual-specific severity terms:

[0, 1].

, each term in
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o Likelihood model for the IBP with categorical observations.

Inference Algorithm Likelihood
Gibbs sampling + Laplace approximation Softmax
Gibbs sampling + Nested EP Multinomial probit
Variational inference Softmax

@ Results are in agreement with previous work and also provide new
information.
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