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Introduction

Individuals with multiple coexisting diseases.

80% of US Medicare spending devoted to patients with 44 chronic
conditions.

Impact of comorbidity: mortality, quality of life, quality of health
care, ...

Psychiatry: etiological and treatment implications.
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Find out the latent relationship among psychiatric disorders.

Database

NESARC database (National Epidemiologic Survey on Alcohol and
Related Conditions):

@ Samples the U.S. population.

_

@ Around 3K questions and 43K subjects.

@ Mainly yes-or-no questions, and some multiple-choice and questions
with ordinal answers.

A\

Our approach

Latent feature modeling and Indian buffet process (IBP).
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Buffet Process

Prior distribution over binary matrices.
Number of columns (features) K — oo.
Matrix Zyxx ~ IBP(«).

Finite N implies finite number of non-zero columns K.
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Observation Model

o Categorical observations: x,4 € {1,..., R} (‘Yes', ‘No’, ‘Unkown’,
‘Blank’, ...).

@ How to link latent features z,,. and observations?

Q

o<
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Observation Model

o Multiple-logistic (softmax) function:

d
-yes /)y

P(xng = ‘ves'|zn., b, BY) o exp (b, + zn.b
p(Xnd = ‘IlO’|Zn., b(c)l’ Bd) X exp (bgllo + zn‘b-cflo)7

exp (bgr + Zn'bfjr)
R )

Z exp (b, + z,.b%))

r'=1

p(Xnd = r|zn., b3, BY) = r=1,...,R.

@ The weighting factors are placed Gaussian priors.
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Observation Model

Given the latent feature matrix Z and the weighting factors B¢ and bg,
the elements in X are independent:

D
p(X|Z,B,...,B" bg,...,b7) = [ ] p(xnalzn, BY, ).
n=1d=1



Inference

Outline

Q@ Inference



Inference
L]

Inference

@ The model is not conditionally conjugate.

@ Posterior on the weighting factors:

Non G Non Gauss Gauss

on Gauss

g > _ p(x.4|B?, b, Z) p(BY)p(bF)
BY bd|X,Zz) = PXdZ - Do o)

p( 0‘ ) p(Xd|Z)

@ The integral in the denominator is intractable:

p(x.4|Z) :/p(x_d|Bd,bg7Z)p(Bd)p(bg)ddebg.
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Gibbs sampling

Gibbs sampling

@ lIteratively sample each element of the IBP matrix.

@ Integrate out all the weighting factors = Intractable.
@ Gaussian approximation of the posterior:

@ Laplace approximation.
© Expectation propagation.
@ Multinomial probit likelihood instead of softmax.
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Variational inference

Variational inference

@ Computationally less expensive than MCMC.

@ Solve a non-convex optimization problem.
e Coordinate ascent.
@ Has to deal with non-conjugacy arising from:
o Multiple-logistic likelihood.
o Bound the ELBO through a first order Taylor series expansion.
o Stick-breaking construction of the IBP.

o Bound the ELBO applying Jensen's inequality.
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Experiments on NESARC

Real data

@ Inputs: Diagnoses of 20 common psychiatric disorders.
@ Previous studies: Factor analysis.

o Specify the number of factors.
o Assume Gaussian observations.
o 3 latent factors seem enough.
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o Likelihood model for the IBP with categorical observations.

Inference Algorithm Likelihood
Gibbs sampling + Laplace approximation Softmax
Gibbs sampling + Nested EP Multinomial probit
Variational inference Softmax

@ Results are in agreement with previous work and also provide new
information.

Ongoing work

@ Individual-specific severity terms:

p(Xng = rlw,, b, BY) oc exp (b, +w, b%), r=1,...,R.

o Instead of on/off features, each term in [0, 1].
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