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ABSTRACT

Bayesian nonparametric models allow solving estimation and
detection problems with an unbounded number of degrees
of freedom. In multiuser multiple-input multiple-output
(MIMO) communication systems we might not know the
number of active users and the channel they face, and assum-
ing maximal scenarios (maximum number of transmitters and
maximum channel length) might degrade the receiver perfor-
mance. In this paper, we propose a Bayesian nonparametric
prior and its associated inference algorithm, which is able
to detect an unbounded number of users with an unbounded
channel length. This generative model provides the dispersive
channel model for each user and a probabilistic estimate for
each transmitted symbol in a fully blind manner, i.e., without
the need of pilot (training) symbols.

Index Terms— Hidden Markov models, Bayesian non
parametrics, Markov chain Monte Carlo, multiple-input
multiple-output (MIMO), channel estimation, user detection.

1. INTRODUCTION

In the last two decades, many researchers have focused on
multiple-input multiple-output (MIMO) communication sys-
tems, due to their high channel capacity at comparatively low
bandwidth consumption [1, 2]. When digital symbols are
transmitted over frequency-selective channels, inter-symbol
interference (ISI) occurs, degrading the performance of the
receiver in terms of symbol detection error probability. To
improve the performance, channel estimation is applied to
mitigate the effects of ISI. Before detecting the transmitted
symbols, the channel state information (CSI) needs to be es-
timated at the receiver by sending pilot symbols as training
data. Blind channel estimation involves symbol detection
without the use of training data, which allows a more efficient
communication as the total bandwidth becomes available for
the user’s data. This can be accomplished either without ex-
plicit estimation of the channel parameters or by joint symbol
detection and channel parameter estimation.

We address the problem of blind joint channel parame-
ter and data estimation in a MIMO communication channel.

Specifically, we tackle the case where neither the number of
transmitters nor the length of the channel impulse response
(channel length) is known. Further details on the problem
statement are given in Section 2. Up to our knowledge, all
previous works consider that at least one of these quantities
is fixed and known, and no efforts have been made to address
simultaneously the channel length estimation and the user ac-
tivity detection problems. This paper aims to solve this lim-
itation making use of Bayesian nonparametric (BNP) tools,
which constitutes a novel contribution. The symbols sent by
each transmitter can be viewed as a time sequence that the re-
ceiver tries to reconstruct, leading us to hidden Markov mod-
els (HMM) [3]. Our approach, based on BNP tools, consists
on modeling all the transmitters as an unbounded number of
independent chains in a factorial HMM (FHMM). In the lit-
erature, many nonparametric extensions of standard time se-
ries models can be found. The hierarchical Dirichlet process
(HDP) has been proposed to define an HMM with an infinite
number of latent states called HDP-HMM [4]. The nonpara-
metric extension of the FHMM in [5] is the infinite factorial
(binary) HMM (IFHMM) [6], which defines a probability dis-
tribution over an unbounded number of binary Markov chains.
We extend this model to allow for any number of states and
develop a new algorithm to infer both the number of Markov
chains and the number of states. Due to its nonparametric na-
ture, our model becomes flexible enough to account for any
number of transmitters and channel length in any communica-
tion scenario, without the need of additional previous knowl-
edge or bounds. Our model is suitable for binary phase-shift
keying (BPSK) multiuser noncoherent scenarios in which nei-
ther the transmitters nor the receiver know the CSI and this
information is blindly estimated. The channel model is selec-
tive in time and frequency, underspread and locally widesense
stationary [7]. Although we focus on additive white Gaussian
noise (AWGN) channels, it can be readily adapted to reckon
with other probability distributions over the noise.

2. MIMO CHANNEL

Assume a MIMO system with Nt transmitters and Nr re-
ceiving antennas, in which each receiver observes a linear
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combination of all the transmitted data sequences, due to the
ISI, under additive white Gaussian noise. Specifically, the
row observation vector compound of the observations at all
the receiving antennas at time instant t is given by yt =∑K−1
k=0 xt−kH

(k) + nt, where xt−k is a vector with the sym-
bols transmitted by all the transmitters at instant t − k, H(k)

is a Nt × Nr matrix which contains the channel coefficients
corresponding to tap k (k ∈ {0, . . . ,K − 1}, being K the
channel length for all the transmitter-receiver pairs), and nt is
the Nr-dimensional noise vector. Let us denote each element
of matrix H(k) as h(k)ji .

We assume the use of a BPSK constellation (i.e., each
symbol xtn = ±1 with equal probability) and therefore, nt,
{H(k)}K−1k=0 and yt contain all real values. We consider that
the noise nt is Gaussian distributed with zero mean and co-
variance matrix σ2

nINr
, being INr

the identity matrix of size
Nr, and the channel coefficients h(k)ji are Gaussian distributed
with zero mean and variance 1.

Our goal is to infer both the number of transmitters and
the transmitted symbols (as well as the channel length and
the channel coefficients) using the observations collected dur-
ing T time steps, i.e., the observation vectors yt for t =
1, . . . , T that we gather in a T × Nr matrix Y. This prob-
lem can be found, for instance, in a code-division multiple
access (CDMA) context where a set of terminals wish to com-
municate with a common access point (AP). Each terminal
accesses the channel randomly, and the AP receives the su-
perposition of signals from the active terminals only. The AP
is interested in determining both the active terminals and the
transmitted symbols. Another example arises in the context
of wireless sensor networks, where the communication nodes
can often switch on and off asynchronously during operation,
and a fusion center collects the signals from a subset of them.
Again, the fusion center faces the problem of determining
both the number of active sensors and the symbols that each
sensor transmits [8]. Finally, another example can be found
in cooperation schemes, such as interference alignment [9],
in which the reuse of frequencies in nearby cells creates an
interference channel between the users and the base stations.

Here, we propose an infinite factorial unbounded HMM,
in which each parallel chain represents a transmitter and the
state at each time instant in the Markov chain corresponds to
the state of the channel between that transmitter and all the
receivers, where the state of the channel is determined by the
set of the last K symbols sent by the transmitter. Hence, the
set of unknowns is composed of the number of transmitters
Nt, the symbols sent by each transmitter, the channel length
K and the channel coefficients {H(k)}K−1k=0 .

3. INFINITE FACTORIAL UNBOUNDED HMM

Assume a factorial nonbinary HMM shown in Figure 1. In
this figure, stm ∈ {0, 1, . . . , Q − 1} represents the hidden
state at time instant t in the m-th chain and all the states stm

are grouped together in a T ×M matrix denoted by S. For
simplicity, we assume that s0m = 0 for all the Markov chains.

Under this model, each chain m represents an HMM with
transition probabilities contained in the Q × Q matrix Am,
whose rows are denoted by amq (q = 0, . . . , Q − 1). Hence,
amq corresponds to the transition probability vector from state
q in chainm. Note that the transition probability matrices Am

are independently distributed for each Markov chain m =
1, . . . ,M , and, since the variables stm follow an HMM, we
can write that

stm|s(t−1)m,Am ∼ ams(t−1)m
. (1)

As shown in Figure 1 and in order to ensure the repro-
ducibility of the model when the number of chains M tend to
infinity, the transition probability vectors amq are differently
distributed for q = 0 (inactive state) than for the rest of the
states, i.e.,

amq |Q, β0, β ∼ Dirichlet(β0, β, . . . , β), (2)

for q = 1, . . . , Q− 1, and

am0 =
[
am (1− am)pm1 . . . (1− am)pmQ−1

]
, (3)

where β0 and β model the a priori information about the tran-
sition probabilities from states other than 0, and am and pm =
[pm1 , . . . , p

m
Q−1] are in turn random variables distributed as

am|α ∼ Beta
(

1,
α

M

)
, and (4)

pm|Q, γ ∼ Dirichlet(γ). (5)

The elements of vector am0 are denoted by am0i , for i =
0, . . . , Q− 1.

The number of hidden statesQ is Poisson distributed with
parameter λ, namely,

p(Q|λ) =
λQ−2e−λ

(Q− 2)!
, Q = 2, . . . ,∞. (6)

The choice of Q sampled from a Poisson distribution is not
a limitation in the application of MIMO channel estimation,
where the memory of the channel, as well as the channel co-
efficients, are assumed to be invariant during the observation
period.

We can obtain the probability distribution over the matrix
S by integrating out the transition probabilities. However, as
the number of independent Markov chains M tends to infin-
ity, the probability of a single matrix S vanishes. This is not
a limitation, since we are interested in the probability of the
whole equivalence class of S. The equivalence classes are
defined with respect to a function on integer-valued matrices,
called lof(·) (left-ordered form), which is obtained by sorting
the columns of the matrix S from left to right by the history
of that column, defined as the magnitude of the base-Q num-
ber expressed by that column, taking the first row as the most



significant value. Since the elements of matrix S can be ar-
bitrarily relabeled, we say that two matrices S1 and S2 with
elements in {0, . . . , Q− 1} are in the same equivalence class
if there exists a bijective permutation function f(·) on the set
{0, . . . , Q− 1}, subject to f(0) = 0, such that, when applied
to all the elements of S2 to obtain S′2, lof(S1) = lof(S′2). The
element 0 cannot be relabeled, since it represents the inactive
state and therefore requires special treatment.

Finally, remark that this model is exchangeable in the
columns and in the labels of the states, and Markov ex-
changeable in the rows.

In order to fit the likelihood model to MIMO systems we
propose the observation model shown in Figure 1, in which
the observation matrix Y is distributed as a Gaussian random
matrix, i.e.,

p(Y|S,Φ1, . . . ,ΦQ−1, σ
2
y) =

1

(2πσ2
y)

TD
2

exp

{
− 1

2σ2
y

× trace

[(
Y −

Q−1∑
q=1

ZqΦq

)>(
Y −

Q−1∑
q=1

ZqΦq

)]}
,

(7)

where Zq is defined as a binary T × M+ matrix with ele-
ments (Zq)tm = 1 if stm = q (assuming S is expressed in its
left-ordered form) and zero otherwise, and Φq are M+ × D
matrices, with M+ being the number of nonzero columns in
S. Thus, the mean value of yt depends on the additive contri-
bution of all chains (transmitters) at time instant t.

Under this model, the matrices Φq are closely related to
the channel coefficients. Specifically, each row of the matrix
Φq corresponds to the linear combination of the K channel
coefficients corresponding to a particular state q of the chan-
nel between one transmitter and all the receivers. Note that
the number of coefficients that are linearly combined to ob-
tain the matrices Φq coincides with the channel length K,
which is represented in this model by the number of states Q,
such that Q = 2K + 1.

We place a normal-inverse-gamma prior over both the ob-
servation noise variance and the set of matrices {Φq}Q−1q=1 ,
i.e.,

p({Φq}Q−1q=1 , σ
2
y|S, ξ, ν, τ) = N− Γ−1(0, ξ, ν, τ)

=
ντ

Γ(τ)

(
1

σ2
y

)τ+1

exp

{
− ν

σ2
y

}

×
Q−1∏
q=1

1(
2πσ2

y/ξ
)DM+

2

exp

{
− ξ

2σ2
y

trace
[
Φ>q Φq

]}
.

(8)

Note that the parameters Φq for any particular state q through
all the chains are assumed as independent and we have also
placed a prior over the observation noise variance. The inde-
pendence among the variables Φq is assumed to properly fit
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Fig. 1. Graphical observation model for the nonbinary infinite
factorial HMM.

the MIMO channel, where the channel coefficients are all in-
dependent, while the prior over the noise variance makes the
inference less sensitive to this parameter.

4. INFERENCE

We propose an MCMC sampler that obtains samples from
the target distribution p([S], Q|Y) by iteratively proceeding
as follows:
• Step 1: Update the allocation matrix S for a given value

of Q via Gibbs sampling.
• Step 2: Consider splitting a component into two or

merging two into one.
• Step 3: Consider the birth of a new state or the death

of an empty state.
Remark that the number of active parallel Markov chains is
updated in first step, while the two latter steps allow increas-
ing or decreasing the number of states Q by one. For clarity,
throughout this subsection we drop the dependence on the hy-
perparameters in the notation.

Step 1: Gibbs sampler
The first step involves just a sweep of the Gibbs sampler. The
algorithm iteratively samples the value of each element stm
given the remaining variables, i.e., it samples from

p(stm = k|Y,S¬tm, Q) ∝ p(stm = k|S¬tm, Q)p(Y|S),
(9)

where S¬tm represents the matrix S without the element stm.
An analytical expression for the term p(stm = k|S¬tm, Q)

in Eq. 9 can be derived. Additionally, the second term in Eq. 9
can be obtained by integrating out the observation noise vari-
ance σ2

y and all matrices Φq in (7).
Hence, for t = 1, . . . , T , the Gibbs sampler proceeds as

follows:
1. For m = 1, . . . ,M+, sample element stm from (9).



2. DrawMnew columns of S with states stm (m = M+ +
1, . . . ,M++Mnew) from a distribution where the prior
is Poisson(Mnew|αT )× 1

(Q−1)Mnew
, and update M+.

Step 2: Split and Merge moves
In the second step, we choose to split with probability bQ or
to merge with probability dQ = 1 − bQ. Naturally, d2 = 0,
and we use bQ = dQ = 1/2 for Q = 3, . . . ,∞. In the
merge move, we start from a matrix S̃ and Q + 1 states and
we randomly select two of the nonzero states, q1 and q2, and
combine them into a single state q∗, thus creating a matrix S
with Q states. In the split move, in which we start from a ma-
trix S andQ states, a nonzero state q∗ is randomly chosen and
split into two new ones, q1 and q2, ending with a new matrix
S̃ and Q+ 1 states. The acceptance probabilities for the split
and merge moves are given by min(1, R) and min(1, R−1),
respectively, where

R =
p(Y|[S̃])

p(Y|[S])

p([S̃]|Q+ 1)

p([S]|Q)

p(Q+ 1)

p(Q)

dQ+12/Q

bQPalloc
, (10)

being Palloc the probability of making the particular alloca-
tion of the elements in matrix S̃. Therefore, Palloc depends
on how the elements in S taking value q∗ are split into q1 and
q2. Although the simplest allocation method could consist
on splitting completely at random, we decide to apply sev-
eral sweeps of a restricted Gibbs sampling scheme for those
states in S taking value q∗, so as to increase the acceptance
probability.

Step 3: Birth and Death moves
In the third step, we first randomly choose between the birth
or the death of a state with probabilities bQ and dQ, respec-
tively. The removal of a state is accomplished by randomly
selecting an empty component and deleting it, thereby jump-
ing from Q + 1 states to Q. Matrix S̃ is relabeled so that its
elements belong to the set {0, . . . , Q− 1}, resulting in matrix
S. In the birth move, we start from a model with Q states
and we create a new empty component. Matrix S is unaltered
in this process, i.e., S̃ = S. The acceptance probabilities for
the birth and death moves are min(1, R) and min(1, R−1),
respectively, where in this case R is given by

R =
p([S̃]|Q+ 1)

p([S]|Q)

p(Q+ 1)

p(Q)

dQ+1

bQ(Q0 + 1)
, (11)

with Q0 being the number of empty components before the
birth of a new empty state.

5. EXPERIMENTS

We now generate a series of examples to assess the perfor-
mance of the proposed model. To this end, we simulate

a MIMO system for different scenarios. Simulated data
is standard for analyzing digital communication systems
and widely accepted in the research community (see, e.g.,
[10, 11, 12]), because the models accurately represent the
wireless channels. We try different values for the number
of transmitters Nt, the number of receivers Nr, the channel
length K, and the signal-to-noise ratio (SNR), which is de-
fined as SNR(dB) = −10 log(σ2

n). In particular, we consider
three multiuser MIMO scenarios:
• Scenario A: Flat channel (K = 1) with two transmitters

(Nt = 2).
• Scenario B: Channel length K = 2 and Nt = 2.
• Scenario C: Channel length K = 2 and Nt = 3.
For these three cases, we vary the SNR value as well as

the number of receivers Nr. In order to generate the observa-
tions, we assume a number of transmittersNt that send a burst
of BPSK symbols during the observation period T = 150.
We assume that the transmitters sequentially become active
with random initial instant and burst duration, ensuring that
the burst consists in the transmission of at least 30 symbols
since shorter bursts are unusual in a real communication sys-
tem. As we described in Section 2, the channel is assumed
to be Rayleigh, i.e., the channel coefficients are Gaussian dis-
tributed with zero mean and variance equal to one, and the
observations are corrupted by Gaussian additive noise with
zero mean and variance σ2

n.
We evaluate the performance of the model in terms of

detection error probability (DEP), defined as the error proba-
bility of detecting both the true number of transmitters and the
true channel length. Additionally, for those cases where the
true values for the number of transmitters and channel length
are recovered, we also evaluate the symbol error rate (SER),
the activity detection error rate (ADER), and the mean square
error (MSE) of the channel coefficient estimates. When com-
puting the SER, an error is computed at time t whenever the
estimated symbol for a transmitter differs from the actual
transmitted symbol, given that the transmitter is active. Re-
garding the ADER, it is the probability of detecting activity
(inactivity) in a transmitter while that transmitter is actually
inactive (active). Additionally, if we denote the Nt × Nr
matrix that contains the estimated channel coefficients cor-
responding to tap k (k ∈ {0, . . . ,K − 1}) by Ĥ(k) and its
elements by ĥ(k)ji , we can compute the MSE as

MSE =
1

KNtNr

∑
j,i,k

(
h
(k)
ji − ĥ

(k)
ji

)2
, (12)

where the estimated coefficients ĥ(k)ji are obtained using the
MAP (maximum a posteriori) solution of the matrices Φq .

For each scenario, we run 500 simulations for each com-
bination of the SNR and the Nr values. In each experiment
we run 50 iterations of the inference algorithm presented in
Section 4 to infer the latent matrix S. The hyperparameters
are set to α = 1, γ = 1, β0 = 0.1, β = 10, λ = 1,
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Fig. 2. Results for the Scenario A.

τ = 1, ν = 0.1 and ξ = 2σ2
n (the SNR is known at the

receiver because it usually has a SNR estimator device). Note
that, although we have adapted the observation model to prop-
erly fit MIMO systems, the proposed model still suffers from
several limitations because, although the number of possibles
states in the channel is a power of two (i.e., 2K), our model
allows any integer value above 1. Then, we resort to an addi-
tional post-processing of the inference results to account for
the prior knowledge of the communication system. Specifi-
cally, we rearrange the elements of the inferred matrix S, so
that the inferred matrices Φq properly recover the channel co-
efficients. We repeat the previous procedure, consisting on the
50 iterations of the inference algorithm and post-processing,
initialized with the results of the first post-processing.

For the Scenario A, we show in Fig. 2 the DEP, the SER,
the MSE and the ADER as functions of the SNR for several
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Fig. 3. Results for the Scenario B.

values of the number of receivers Nr. In all these plots, we
observe that the performance of the proposed algorithm (ini-
tialized with Q = 2 states) improves as the SNR or the num-
ber of receivers increase.

For the Scenario B, we show in Fig. 3 the DEP, the SER,
the MSE and the ADER as functions of the number of re-
ceivers Nr for SNR = 0dB and initializing the algorithm
withQ = 6 states. Note that the behavior of the inference im-
proves as the number of receivers increases untilNr = 15, but
for higher values of Nr the DEP is around 10% and the SER,
the MSE and the ADER also remain approximately constant.

Finally, let us analyze the performance of the inference
algorithm in the Scenario C. To this end, in Fig. 4 we plot the
DEP, the SER, the MSE and the ADER as functions of the
number of receivers Nr for SNR = 0dB and several initial-
izations of the number of states Q (denoted by Qini in the
plots). The top plot shows that the DEP is much higher when
the algorithm is initialized with Qini = 2 states. This behav-
ior is due to the fact that the algorithm falls in a local optimum
different from the ground truth. However, once the algorithm
finds the true values of both the number of transmitters and
the number of states, the performance of the model is simi-
lar regardless of the initialization. In the cases in which Q is
initialized to 4 or 6, we find similar results, being Qini = 6
slightly better in terms of DEP.

Under the three scenarios, we observe in the SER and
the ADER plots the presence of an error floor (of the order
of 10−2) corresponding to the errors caused by the active-
to-inactive (and inactive-to-active) transitions, which are not
taken into account in our model. These error floors can be
decreased by transmitting larger bursts of symbols, since the
number of transitions becomes negligible compared to the to-
tal number of transmitted bits.
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Fig. 4. Results for the Scenario C.

6. CONCLUSIONS

We have extended the existent binary IFHMM [6] to allow
for any number of states in the Markov chains and developed
an MCMC algorithm that learns both the number of parallel
chains and the number of hidden states in the factorial HMM.
Our algorithm effectively deals with the trade-off problem be-
tween the number of chains and the number of states, avoiding
the model selection. We have applied the model to the joint
activity detection and channel parameter estimation problem
in multiuser MIMO systems. Simulation results show that our
algorithm properly recovers the number of active transmitters
as well as the transmitted symbols while estimating both the
channel length and the channel coefficients.
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