# BAYESIAN NONPARAMETRICS FOR TIME SERIES MODELING

#### DOCTORAL THESIS

Francisco Jesús Rodríguez Ruiz



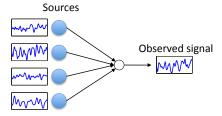
June 30th, 2015

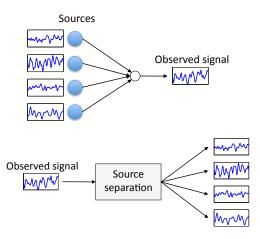
#### **OUTLINE**

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS
  Infinite Factorial Unbounded-State HMM
  Infinite Factorial Finite State Machine
- 4 Conclusions

#### OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS Infinite Factorial Unbounded-State HMN Infinite Factorial Finite State Machine
- 4 Conclusions

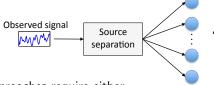




#### Applications:

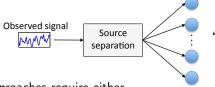
- Power disaggregation.
- Multiuser communication systems.
- Speech separation.
- Multi-target tracking.
- Electroencephalography (EEG).
- ..

How many hidden sources?



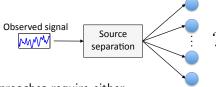
- Classical approaches require either
  - known number of sources.
  - upper bound.
  - model selection.

How many hidden sources?



- Classical approaches require either
  - known number of sources.
  - upper bound.
  - · model selection.
- Bayesian nonparametrics can
  - infer the number of latent sources from the data.
  - avoid model selection.

How many hidden sources?



- Classical approaches require either
  - known number of sources.
  - upper bound.
  - · model selection.
- Bayesian nonparametrics can
  - infer the number of latent sources from the data.
  - avoid model selection.

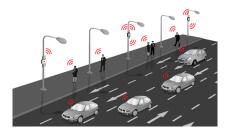
#### Our Approach

Bayesian nonparametric modeling of discrete-time series for source separation problems

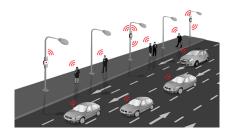




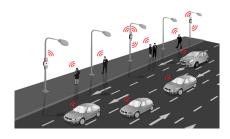
• Pick a large enough #sources.



- ullet Pick a large enough #sources.
- Model selection (AIC, BIC).



- Pick a large enough #sources.
- Model selection (AIC, BIC).
- Bayesian model selection.

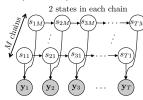


- Pick a large enough #sources.
- Model selection (AIC, BIC).
- Bayesian model selection.
- BNP:
  - Model complexity grows with data size.
  - Unbounded #sources.

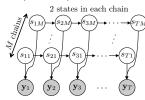
- Many BNP models for discrete-time series.
  - e.g., infinite HMM.
- Not many BNP models for source separation.

- Many BNP models for discrete-time series.
  - e.g., infinite HMM.
- Not many BNP models for source separation.
  - Infinite ICA.

- Many BNP models for discrete-time series.
  - e.g., infinite HMM.
- Not many BNP models for source separation.
  - Infinite ICA.
  - Infinite Factorial HMM (IFHMM).



- Many BNP models for discrete-time series.
  - e.g., infinite HMM.
- Not many BNP models for source separation.
  - Infinite ICA.
  - Infinite Factorial HMM (IFHMM).



ICA-IFHMM.

Lack of BNP models for source separation:

- Infinite factorial HMM with non-binary hidden states.
  - e.g., power disaggregation.

Lack of BNP models for source separation:

- Infinite factorial HMM with non-binary hidden states.
  - e.g., power disaggregation.
- Model that accounts for multipath propagation.
  - e.g., multiuser communications systems.

Lack of BNP models for source separation:

- Infinite factorial HMM with **non-binary** hidden states.
  - e.g., power disaggregation.
- Model that accounts for multipath propagation.
  - e.g., multiuser communications systems.
- Model with continuous-valued states that captures temporal dependencies.
  - e.g., speech separation.

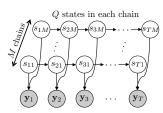
# Contributions

## Infinite Factorial Unbounded-State HMM

- Non-binary IFHMM.
  - Can infer the number of HMMs in a factorial model.
- IFUHMM.
  - Can additionally infer the cardinality of the state space.

#### Applications:

- Power disaggregation.
- Multiuser communication systems.



### Contributions

# Infinite Factorial Unbounded-State HMM

- Non-binary IFHMM.
  - Can infer the number of HMMs in a factorial model.
- IFUHMM.
  - Can additionally infer the cardinality of the state space.

#### Applications:

- Power disaggregation.
- Multiuser communication systems.

#### Infinite Factorial Finite State Machine

- Can infer the number of FSMs in a factorial model.
- Naturally account for multipath, echo, ...

#### Applications:

Multiuser communication systems.

#### OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS Infinite Factorial Unbounded-State HMN Infinite Factorial Finite State Machine
- 4 Conclusions

# Bayesian Nonparametrics

- Bayesian framework for model selection.
- Prior over **infinite-dimensional** parameter space.
- Only a finite subset of the parameters is used for any finite dataset.
- The model complexity is allowed to grow with data size.
- Rely on stochastic processes:
  - Gaussian process.
  - Dirichlet process.
  - Beta process.
  - ...

# Bayesian Nonparametrics

- Bayesian framework for model selection.
- Prior over **infinite-dimensional** parameter space.
- Only a finite subset of the parameters is used for any finite dataset.
- The model complexity is allowed to grow with data size.
- Rely on stochastic processes:
  - Gaussian process.
  - Dirichlet process.
  - Beta process.
  - . . .

#### Indian Buffet Process

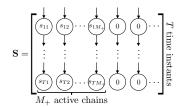
- Prior over binary matrices with infinite columns.
- Rows  $\equiv$  Data points. Columns  $\equiv$  Features.
- $\mathbf{S} \sim \mathrm{IBP}(\alpha)$ .
- $\alpha$ : Concentration parameter.
- Each element s<sub>tm</sub> ∈ {0,1} indicates whether the m-th feature contributes to the t-th data point.
- Only a finite number of columns M<sub>+</sub> active for any finite number of rows.

$$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1M_{+}} & 0 & 0 & \cdots \\ s_{21} & s_{22} & \cdots & s_{2M_{+}} & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ s_{T1} & s_{T2} & \cdots & s_{TM_{+}} & 0 & 0 & \cdots \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \mathbf{O} \\ \mathbf{S} \\ \mathbf{F} \\ \mathbf{M}_{+} \\ \mathbf{M}_{+} \\ \mathbf{M}_{-} \\ \mathbf{N} \\ \mathbf{Columns} \\ \end{bmatrix}$$

- Prior over binary matrices with infinite columns.
- Each column follows a Markov process.
- For any T, only  $M_+$  chains become active.
- The probability p(S) vanishes, but p([S]) > 0.
  - [S]: set of matrices equivalent to S.
- Useful to build a (binary) infinite factorial HMM.

$$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1M_+} & 0 & 0 & \cdots \\ s_{21} & s_{22} & \cdots & s_{2M_+} & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ s_{T1} & s_{T2} & \cdots & s_{TM_+} & 0 & 0 & \cdots \end{bmatrix} \begin{bmatrix} T_1 & T_2 & \cdots & T_{M_+} \\ T_2 & T_3 & T_4 & \cdots & T_{M_+} \\ \hline M_1 & \text{non-zero columns} \end{bmatrix}$$

$$M \text{ columns (chains)}$$



$$\mathbf{S} \sim \mathrm{MIBP}(\alpha, \beta_0, \beta_1)$$

• Can be obtained by defining the transition probabilities

$$\mathbf{A}^m = \left[ egin{array}{ccc} \mathbf{a}^m & 1 - \mathbf{a}^m \ b^m & 1 - b^m \end{array} 
ight] \qquad \qquad \mathbf{a}^m = p(s_{tm} = 0 | s_{(t-1)m} = 0) \ b^m = p(s_{tm} = 0 | s_{(t-1)m} = 1) \end{array}$$

$$\mathbf{S} \sim \mathrm{MIBP}(\alpha, \beta_0, \beta_1)$$

Can be obtained by defining the transition probabilities

$$\mathbf{A}^{m} = \begin{bmatrix} a^{m} & 1 - a^{m} \\ b^{m} & 1 - b^{m} \end{bmatrix} \qquad a^{m} = p(s_{tm} = 0 | s_{(t-1)m} = 0) \\ b^{m} = p(s_{tm} = 0 | s_{(t-1)m} = 1)$$

...with priors

$$a^m \sim \operatorname{Beta}\left(1, \frac{\alpha}{M}\right) \qquad b^m \sim \operatorname{Beta}(\beta_0, \beta_1)$$

• ... and let  $M \to \infty$ 

$$\mathbf{S} \sim \text{MIBP}(\alpha, \beta_0, \beta_1)$$

Can be obtained by defining the transition probabilities

$$\mathbf{A}^{m} = \begin{bmatrix} a^{m} & 1 - a^{m} \\ b^{m} & 1 - b^{m} \end{bmatrix} \qquad a^{m} = p(s_{tm} = 0 | s_{(t-1)m} = 0) \\ b^{m} = p(s_{tm} = 0 | s_{(t-1)m} = 1)$$

...with priors

$$a^m \sim \operatorname{Beta}\left(1, \frac{\alpha}{M}\right) \qquad b^m \sim \operatorname{Beta}(\beta_0, \beta_1)$$

- ... and let  $M \to \infty$
- After integrating out  $a^m$  and  $b^m$ :

$$\lim_{M \to \infty} p([\mathbf{S}]) = \frac{\alpha^{M+}}{\prod_{h=1}^{2^{T}} M_{h}!} e^{-\alpha H_{T}} \prod_{m=1}^{M+} \frac{(n_{01}^{m} - 1)!(n_{00}^{m})!\Gamma(\beta_{0} + \beta_{1})\Gamma(\beta_{0} + n_{10}^{m})\Gamma(\beta_{1} + n_{11}^{m})}{(n_{00}^{m} + n_{01})!\Gamma(\beta_{0})\Gamma(\beta_{1})\Gamma(\beta_{0} + \beta_{1} + n_{10}^{m} + n_{11}^{m})}$$

Markov exchangeable in the rows.

#### **OUTLINE**

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS
  Infinite Factorial Unbounded-State HMM
  Infinite Factorial Finite State Machine
- 4 Conclusions

#### **OUTLINE**

- 1 Introduction
- 2 Bayesian Nonparametrics
- **3** Contributions

Infinite Factorial Unbounded-State HMM Infinite Factorial Finite State Machine

4 Conclusions

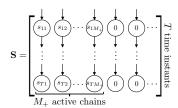
# NON-BINARY INFINITE FACTORIAL HMM

- Generalization of the MIBP for non-binary matrices.
- Each state  $s_{tm} \in \{0, 1, \dots, Q 1\}.$
- Inactive state ( $s_{tm} = 0$ ).

$$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1M_{+}} & 0 & 0 & \cdots \\ s_{21} & s_{22} & \cdots & s_{2M_{+}} & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ s_{T1} & s_{T2} & \cdots & s_{TM_{+}} & 0 & 0 & \cdots \end{bmatrix} \overset{\mathbf{S}}{\text{tille}} \overset{\mathbf{H}}{\text{tille}}$$

$$M_{+} \text{ non-zero columns}$$

$$M \text{ columns (chains)}$$



# Non-Binary Infinite Factorial HMM

Can be obtained by defining the transition probabilities

$$\mathbf{A}^{m} = \left[ \begin{array}{cccc} a_{00}^{m} & a_{01}^{m} & \cdots & a_{0(Q-1)}^{m} \\ a_{10}^{m} & a_{11}^{m} & \cdots & a_{1(Q-1)}^{m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(Q-1)0}^{m} & a_{(Q-1)1}^{m} & \cdots & a_{(Q-1)(Q-1)}^{m} \end{array} \right]$$

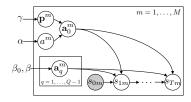
Can be obtained by defining the transition probabilities

$$\mathbf{A}^{m} = \begin{bmatrix} a_{00}^{m} & a_{01}^{m} & \cdots & a_{0(Q-1)}^{m} \\ a_{10}^{m} & a_{11}^{m} & \cdots & a_{1(Q-1)}^{m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(Q-1)0}^{m} & a_{(Q-1)1}^{m} & \cdots & a_{(Q-1)(Q-1)}^{m} \end{bmatrix} \qquad \gamma - \alpha_{1(Q-1)(Q-1)}^{m}$$

Prior distribution:

$$\mathbf{a}^m \sim \mathrm{Beta}\left(1, \frac{\alpha}{M}\right) \qquad \mathbf{p}^m \sim \mathrm{Dirichlet}(\gamma)$$
  $\mathbf{a}_0^m = \left[\mathbf{a}^m \quad (1 - \mathbf{a}^m)\mathbf{p}^m\right]$ 

$$\mathbf{a}_{q}^{m} \sim \text{Dirichlet}(\beta_{0}, \beta, \dots, \beta), \quad q = 1, \dots, Q - 1$$



$$\lim_{M \to \infty} p([S]) = \frac{(Q-1)!}{(Q-N_Q)! N_f} \frac{\alpha^{M_+}}{Q^{T_{-1}}} e^{-\alpha H_T}$$

$$\times \prod_{m=1}^{M_+} \left[ \frac{\Gamma(n_{00}^m + 1) \Gamma\left(\sum_{i=1}^{Q-1} n_{0i}^m\right)}{\Gamma(n_{0\bullet}^m + 1)} \frac{\Gamma\left((Q-1)\gamma\right) \prod_{i=1}^{Q-1} \Gamma(n_{0i}^m + \gamma)}{\Gamma\left(\sum_{i=1}^{Q-1} (n_{0i}^m + \gamma)\right) (\Gamma(\gamma))^{Q-1}} \right]$$

$$imes \prod_{q=1}^{Q-1} \left( rac{\Gamma\left(eta_0 + (Q-1)eta
ight)}{\Gamma(eta_0)\left(\Gamma(eta)
ight)^{Q-1}} rac{\Gamma(n_{q0}^m + eta_0)\prod\limits_{i=1}^{Q-1}\Gamma(n_{qi}^m + eta)}{\Gamma\left(n_{qullet}^m + eta_0 + (Q-1)eta
ight)} 
ight) 
ight].$$

$$Q = 3$$
 states (1 inactive + 2 active)

$$t = 1$$



$$Q = 3$$
 states (1 inactive  $+$  2 active)



t=1



$$Q = 3$$
 states (1 inactive  $+$  2 active)



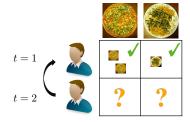
t = 1



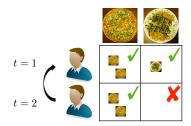


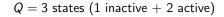


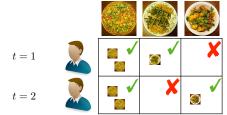
$$Q = 3$$
 states (1 inactive  $+$  2 active)

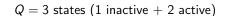


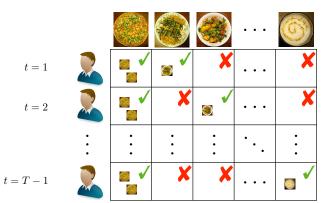
$$Q = 3$$
 states (1 inactive  $+$  2 active)

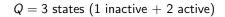


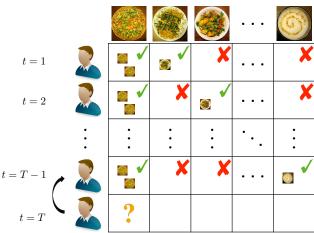




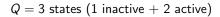


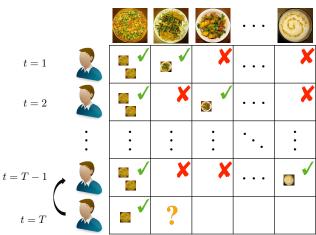




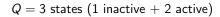


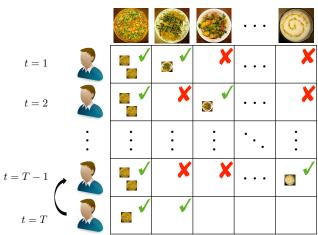
 $p(s_{T1} = 0) \propto \beta_0 + n_{20}^1$  $p(s_{T1} = 1) \propto \beta + n_{21}^1$  $p(s_{T1} = 2) \propto \beta + n_{22}^1$ 





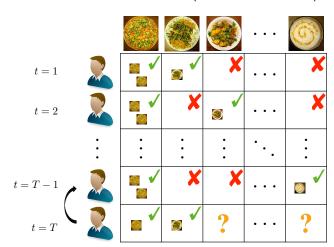
 $p(s_{T2} = 0) \propto 1 + n_{00}^2$  $p(s_{T2} \neq 0) \propto n_{01}^2 + n_{02}^2$ 



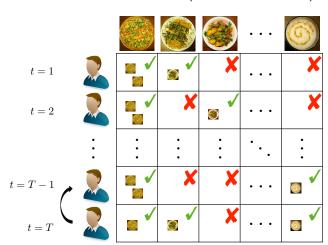


 $p(s_{T2} = 1) \propto \gamma + n_{01}^2$  $p(s_{T2} = 2) \propto \gamma + n_{02}^2$ 

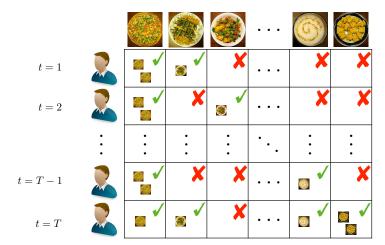
Q = 3 states (1 inactive + 2 active)



Q = 3 states (1 inactive + 2 active)



Q = 3 states (1 inactive + 2 active)



Q = 3 states (1 inactive + 2 active)

|           |   |   |   |   | • • • | (G) |   |
|-----------|---|---|---|---|-------|-----|---|
| t = 1     |   | 2 | 1 | 0 |       | 0   | 0 |
| t = 2     |   | 2 | 0 | 1 |       | 0   | 0 |
|           | • | : | : | : | ٠     | •   | : |
| t = T - 1 |   | 2 | 0 | 0 |       | 1   | 0 |
| t = T     |   | 1 | 1 | 0 |       | 1   | 2 |

Q = 3 states (1 inactive + 2 active)

|           |   |   |   |   | • • • |   | (G) |
|-----------|---|---|---|---|-------|---|-----|
| t = 1     |   | 0 | 2 | 0 |       | 1 | 0   |
| t = 2     |   | 1 | 2 | 0 |       | 0 | 0   |
|           | : | : | : | • | ٠     | • | •   |
| t = T - 1 |   | 0 | 2 | 0 |       | 0 | 1   |
| t = T     |   | 0 | 1 | 2 |       | 1 | 1   |

Q = 3 states (1 inactive + 2 active)

|           |   |   |   |   | • • • |   | (G) |
|-----------|---|---|---|---|-------|---|-----|
| t = 1     |   | 0 | 1 | 0 |       | 2 | 0   |
| t = 2     |   | 2 | 1 | 0 |       | 0 | 0   |
|           | : | : | : | • | ٠     | • | :   |
| t = T - 1 |   | 0 | 1 | 0 |       | 0 | 2   |
| t = T     |   | 0 | 2 | 1 |       | 2 | 2   |

# FIXED Q

- MCMC:
  - Sample from the posterior.
  - Blocked sampling approach.
  - $\bullet \ \, {\sf Slice \ sampling} \to \\ \, {\sf Stick-breaking \ construction}. \\$
  - FFBS for each Markov chain.
- Variational:
  - Approximate the posterior.
  - Structured approach.
  - Involves a forward-backward algorithm.

## FIXED Q

- MCMC:
  - Sample from the posterior.
  - Blocked sampling approach.
  - $\bullet \ \, {\sf Slice \ sampling} \to \\ \, {\sf Stick-breaking \ construction}. \\$
  - FFBS for each Markov chain.
- Variational:
  - Approximate the posterior.
  - Structured approach.
  - Involves a forward-backward algorithm.

# Infinite Factorial Unbounded-State HMM

Prior over the number of states:

$$Q = 2 + Q',$$
  $Q' \sim \text{Poisson}(\lambda)$ 

# FIXED Q

- MCMC:
  - Sample from the posterior.
  - Blocked sampling approach.
  - $\bullet \ \, {\sf Slice \ sampling} \to \\ \, {\sf Stick-breaking \ construction}. \\$
  - FFBS for each Markov chain.
- Variational:
  - Approximate the posterior.
  - Structured approach.
  - Involves a forward-backward algorithm.

## Infinite Factorial Unbounded-State HMM

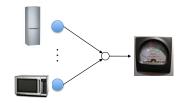
• Prior over the number of states:

$$Q = 2 + Q',$$
  $Q' \sim \text{Poisson}(\lambda)$ 

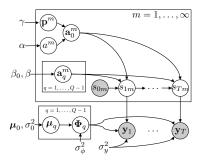
#### Unknown Q

- MCMC:
  - Based on reversible jump MCMC.
  - Integrate out dimension-changing variables.
  - Updating variables:
    - Q: Split/merge, birth/death.
    - M<sub>+</sub>: Slice sampling.

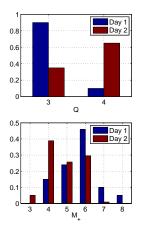
- Estimate the power consumption of each device.
- Non-invasive measurements.
  - Improve efficiency of consumers.
  - Detect faulty equipment.
- Two datasets.
  - REDD (1 day, 5 houses, 6 devices).
  - AMP (2 days, 1 house, 8 devices).



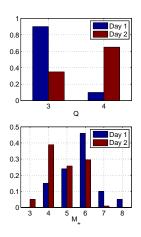
#### Gaussian observation model

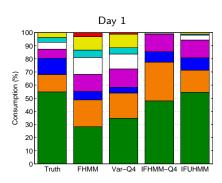


Results for the AMP database (2 days, 8 devices):

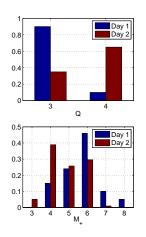


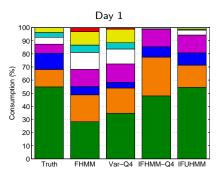
Results for the AMP database (2 days, 8 devices):





Results for the AMP database (2 days, 8 devices):

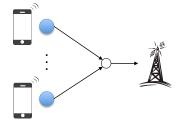




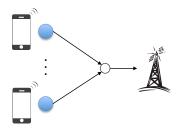
$$\text{accuracy} = 1 - \frac{\sum_{t=1}^{T} \sum_{m=1}^{M} |y_{t}^{(m)} - \hat{y}_{t}^{(m)}|}{2 \sum_{t=1}^{T} \sum_{m=1}^{M} y_{t}^{(m)}}$$

| FHMM            | Var-Q4          | IFHMM-Q4        | IFUHMM          |
|-----------------|-----------------|-----------------|-----------------|
| $0.36 \pm 0.05$ | $0.48 \pm 0.06$ | $0.58 \pm 0.11$ | $0.69 \pm 0.10$ |

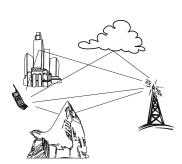
# MULTIUSER COMMUNICATION SYSTEM



# MULTIUSER COMMUNICATION SYSTEM



#### Multipath propagation

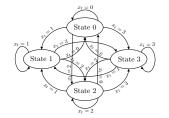


#### **OUTLINE**

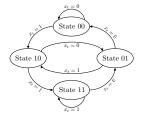
- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS
  Infinite Factorial Unbounded-State HMN
  Infinite Factorial Finite State Machine
- 4 Conclusions

## FINITE-MEMORY FINITE STATE MACHINE

Finite-Memory FSM: The state depends on the last L inputs  $x_t$ .



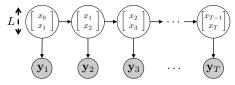
HMM with Q=4 states. Dense transition probability matrix.



FSM with memory length L=2. Sparse transition probability matrix.

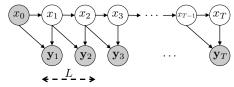
#### Infinite Factorial Finite State Machine

• HMM representation of an FSM:

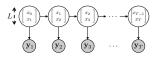


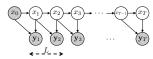
State space cardinality:  $|\mathcal{X}|^L$ .

Alternative representation (likelihood accounts for the memory):

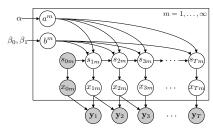


The likelihood accounts for the memory.





- Infinite Factorial FSM:
  - $M \to \infty$  parallel FSMs.
  - $S \sim MIBP(\alpha, \beta_0, \beta_1)$ .
  - Auxiliary variables  $s_{tm}$  indicate activity/inactivity.
  - $x_{tm} = 0$  if  $s_{tm} = 0$  and  $x_{tm} \in A$  otherwise.



#### Inference

MCMC inference algorithm:

- Propose new parallel FSMs.
  - Slice sampling.
  - Stick-breaking construction.
- **2** Update hidden states  $x_{tm}$ ,  $s_{tm}$ .
  - Particle Gibbs with ancestor sampling.
- Remove inactive FSMs.
- Sample global variables.

#### Inference

#### MCMC inference algorithm:

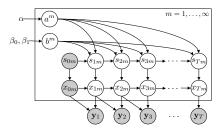
- Propose new parallel FSMs.
  - · Slice sampling.
  - Stick-breaking construction.
- **2** Update hidden states  $x_{tm}$ ,  $s_{tm}$ .
  - Particle Gibbs with ancestor sampling.
- Remove inactive FSMs.
- Sample global variables.

# PARTICLE GIBBS WITH ANCESTOR SAMPLING

- Combines MCMC and SMC.
- Better mixing properties than FFBS.
- Outperforms FFBS:
  - Quadratic complexity with memory L.
  - Can handle more general models.

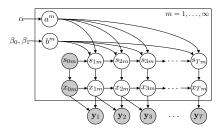
#### GENERALIZATION OF THE MODEL

- Extensions that we can easily handle:
  - States  $x_{tm}$  do not necessarily belong to finite set.
  - The state  $x_{tm}$  depends on  $x_{(t-1)m}$ .



#### GENERALIZATION OF THE MODEL

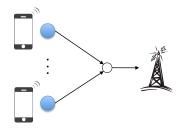
- Extensions that we can easily handle:
  - States  $x_{tm}$  do not necessarily belong to finite set.
  - The state  $x_{tm}$  depends on  $x_{(t-1)m}$ .



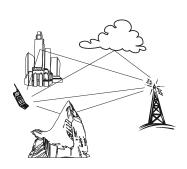
- Applications:
  - Multi-target tracking.
  - Speech separation.
  - •

# Multiuser Communication System

- Estimate the number of users and the transmitted symbols.
- Machine-to-machine communications:
  - Transmitters switching on and off asynchronously.
  - Short bursts of symbols.
  - Reduce message overhead.
  - 5G systems.

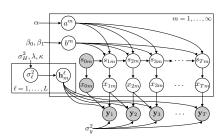


### Multipath propagation



#### Gaussian observation model

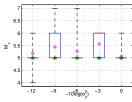
$$\mathbf{y}_t = \sum_{m=1}^{M_+} \sum_{\ell=1}^L \mathbf{h}_m^\ell \mathbf{x}_{(t-\ell+1)m} + \mathbf{n}_t$$

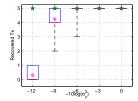


Synthetic experiment with 5 transmitters and 20 receivers.

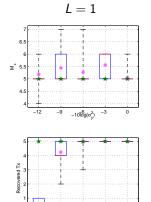
$$L=1$$

Synthetic experiment with 5 transmitters and 20 receivers.

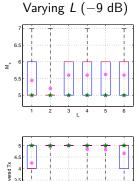


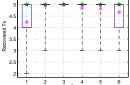


Synthetic experiment with 5 transmitters and 20 receivers.



0





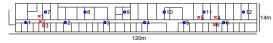
### Wi-Fi experiment:

- Ray-tracing software (WISE).
- 6 transmitters, 12 receivers.
- Office at Bell Labs Crawford Hill.



#### Wi-Fi experiment:

- Ray-tracing software (WISE).
- 6 transmitters, 12 receivers.
- Office at Bell Labs Crawford Hill.

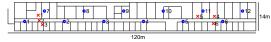


• Recovered transmitters / Inferred *M*<sub>+</sub>:

|  | Algorithm | L    |      |     |      |     |  |
|--|-----------|------|------|-----|------|-----|--|
|  |           | 1    | 2    | 3   | 4    | 5   |  |
|  | PGAS      | 6/6  | 6/6  | 6/6 | 6/6  | 6/6 |  |
|  | FFBS      | 3/11 | 3/11 | 3/8 | 1/10 | _   |  |

#### Wi-Fi experiment:

- Ray-tracing software (WISE).
- 6 transmitters, 12 receivers.
- Office at Bell Labs Crawford Hill.



Recovered transmitters / Inferred M<sub>+</sub>:

| Algorithm | L    |      |     |      |     |
|-----------|------|------|-----|------|-----|
| Algorithm | 1    | 2    | 3   | 4    | 5   |
| PGAS      | 6/6  | 6/6  | 6/6 | 6/6  | 6/6 |
| FFBS      | 3/11 | 3/11 | 3/8 | 1/10 | _   |

• MSE  $(\times 10^{-6})$  of the first channel tap  $(\ell = 1)$ :

| Algorithm | L    |      |      |      |      |
|-----------|------|------|------|------|------|
| Algoritim | 1    | 2    | 3    | 4    | 5    |
| PGAS      | 2.58 | 2.51 | 0.80 | 0.30 | 0.16 |
| FFBS      | 2.79 | 1.38 | 5.53 | 1.90 | _    |
|           |      |      |      | 0.   |      |

(noise variance is  $\sim 10^{-8}$ )

### OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS Infinite Factorial Unbounded-State HMN Infinite Factorial Finite State Machine
- 4 Conclusions

## Conclusions

#### CONTRIBUTIONS

- Non-Binary Infinite Factorial HMM.
  - MCMC inference.
  - Variational inference.
- Infinite Factorial Unbounded-State HMM.
  - MCMC inference.
- Infinite Factorial Finite State Machine.
  - Particle MCMC inference.

## Conclusions

### CONTRIBUTIONS

- Non-Binary Infinite Factorial HMM.
  - MCMC inference.
  - Variational inference.
- Infinite Factorial Unbounded-State HMM.
  - MCMC inference.
- Infinite Factorial Finite State Machine.
  - Particle MCMC inference.

#### FUTURE WORK

- Doubly nonparametric IFHMM.
- Semi-Markov approaches.
- Inference:
  - Scalability.
  - Mixing of MCMC.
  - Online.
- Other applications.
- Time-varying channels.

Thanks for your attention!



# BINARY IFHMM FOR POWER DISAGGREGATION

- REDD dataset (5 houses, 1 day, 6 devices).
- Binary IFHMM (Q = 2).
- Histogram of inferred  $M_+$ :

