BAYESIAN NONPARAMETRICS FOR TIME SERIES MODELING

DOCTORAL THESIS

Francisco Jesús Rodríguez Ruiz

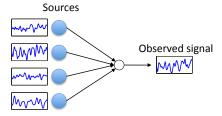
June 30th, 2015

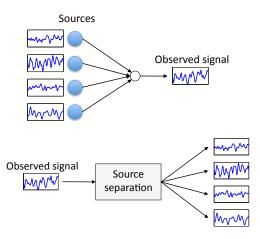
OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS
 Infinite Factorial Unbounded-State HMM
 Infinite Factorial Finite State Machine
- 4 Conclusions

OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS Infinite Factorial Unbounded-State HMN Infinite Factorial Finite State Machine
- 4 Conclusions

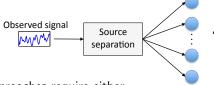




Applications:

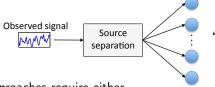
- Power disaggregation.
- Multiuser communication systems.
- Speech separation.
- Multi-target tracking.
- Electroencephalography (EEG).
- ..

How many hidden sources?



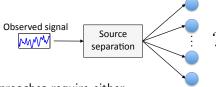
- Classical approaches require either
 - known number of sources.
 - upper bound.
 - model selection.

How many hidden sources?



- Classical approaches require either
 - known number of sources.
 - upper bound.
 - · model selection.
- Bayesian nonparametrics can
 - infer the number of latent sources from the data.
 - avoid model selection.

How many hidden sources?



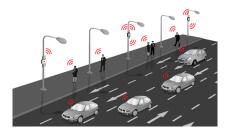
- Classical approaches require either
 - known number of sources.
 - upper bound.
 - · model selection.
- Bayesian nonparametrics can
 - infer the number of latent sources from the data.
 - avoid model selection.

Our Approach

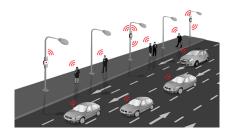
Bayesian nonparametric modeling of discrete-time series for source separation problems



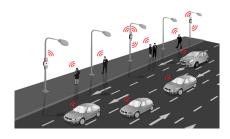
• Pick a large enough #sources.



- ullet Pick a large enough #sources.
- Model selection (AIC, BIC).



- Pick a large enough #sources.
- Model selection (AIC, BIC).
- Bayesian model selection.

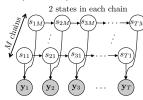


- Pick a large enough #sources.
- Model selection (AIC, BIC).
- Bayesian model selection.
- BNP:
 - Model complexity grows with data size.
 - Unbounded #sources.

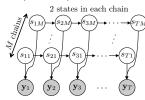
- Many BNP models for discrete-time series.
 - e.g., infinite HMM.
- Not many BNP models for source separation.

- Many BNP models for discrete-time series.
 - e.g., infinite HMM.
- Not many BNP models for source separation.
 - Infinite ICA.

- Many BNP models for discrete-time series.
 - e.g., infinite HMM.
- Not many BNP models for source separation.
 - Infinite ICA.
 - Infinite Factorial HMM (IFHMM).



- Many BNP models for discrete-time series.
 - e.g., infinite HMM.
- Not many BNP models for source separation.
 - Infinite ICA.
 - Infinite Factorial HMM (IFHMM).



ICA-IFHMM.

Lack of BNP models for source separation:

- Infinite factorial HMM with non-binary hidden states.
 - e.g., power disaggregation.

Lack of BNP models for source separation:

- Infinite factorial HMM with non-binary hidden states.
 - e.g., power disaggregation.
- Model that accounts for multipath propagation.
 - e.g., multiuser communications systems.

Lack of BNP models for source separation:

- Infinite factorial HMM with **non-binary** hidden states.
 - e.g., power disaggregation.
- Model that accounts for multipath propagation.
 - e.g., multiuser communications systems.
- Model with continuous-valued states that captures temporal dependencies.
 - e.g., speech separation.

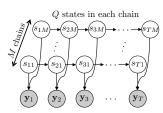
Contributions

Infinite Factorial Unbounded-State HMM

- Non-binary IFHMM.
 - Can infer the number of HMMs in a factorial model.
- IFUHMM.
 - Can additionally infer the cardinality of the state space.

Applications:

- Power disaggregation.
- Multiuser communication systems.



Contributions

Infinite Factorial Unbounded-State HMM

- Non-binary IFHMM.
 - Can infer the number of HMMs in a factorial model.
- IFUHMM.
 - Can additionally infer the cardinality of the state space.

Applications:

- Power disaggregation.
- Multiuser communication systems.

Infinite Factorial Finite State Machine

- Can infer the number of FSMs in a factorial model.
- Naturally account for multipath, echo, ...

Applications:

Multiuser communication systems.

OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS Infinite Factorial Unbounded-State HMN Infinite Factorial Finite State Machine
- 4 Conclusions

Bayesian Nonparametrics

- Bayesian framework for model selection.
- Prior over **infinite-dimensional** parameter space.
- Only a finite subset of the parameters is used for any finite dataset.
- The model complexity is allowed to grow with data size.
- Rely on stochastic processes:
 - Gaussian process.
 - Dirichlet process.
 - Beta process.
 - ...

Bayesian Nonparametrics

- Bayesian framework for model selection.
- Prior over **infinite-dimensional** parameter space.
- Only a finite subset of the parameters is used for any finite dataset.
- The model complexity is allowed to grow with data size.
- Rely on stochastic processes:
 - Gaussian process.
 - Dirichlet process.
 - Beta process.
 - . . .

Indian Buffet Process

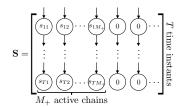
- Prior over binary matrices with infinite columns.
- Rows \equiv Data points. Columns \equiv Features.
- $\mathbf{S} \sim \mathrm{IBP}(\alpha)$.
- α : Concentration parameter.
- Each element s_{tm} ∈ {0,1} indicates whether the m-th feature contributes to the t-th data point.
- Only a finite number of columns M₊ active for any finite number of rows.

$$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1M_{+}} & 0 & 0 & \cdots \\ s_{21} & s_{22} & \cdots & s_{2M_{+}} & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ s_{T1} & s_{T2} & \cdots & s_{TM_{+}} & 0 & 0 & \cdots \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \mathbf{O} \\ \mathbf{S} \\ \mathbf{F} \\ \mathbf{M}_{+} \\ \mathbf{M}_{+} \\ \mathbf{M}_{-} \\ \mathbf{N} \\ \mathbf{Columns} \\ \end{bmatrix}$$

- Prior over binary matrices with infinite columns.
- Each column follows a Markov process.
- For any T, only M_+ chains become active.
- The probability p(S) vanishes, but p([S]) > 0.
 - [S]: set of matrices equivalent to S.
- Useful to build a (binary) infinite factorial HMM.

$$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1M_+} & 0 & 0 & \cdots \\ s_{21} & s_{22} & \cdots & s_{2M_+} & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ s_{T1} & s_{T2} & \cdots & s_{TM_+} & 0 & 0 & \cdots \end{bmatrix} \begin{bmatrix} T_1 & T_2 & \cdots & T_{M_+} \\ T_2 & T_3 & T_4 & \cdots & T_{M_+} \\ \hline M_1 & \text{non-zero columns} \end{bmatrix}$$

$$M \text{ columns (chains)}$$



$$\mathbf{S} \sim \mathrm{MIBP}(\alpha, \beta_0, \beta_1)$$

• Can be obtained by defining the transition probabilities

$$\mathbf{A}^m = \left[egin{array}{ccc} \mathbf{a}^m & 1 - \mathbf{a}^m \ b^m & 1 - b^m \end{array}
ight] \qquad \qquad \mathbf{a}^m = p(s_{tm} = 0 | s_{(t-1)m} = 0) \ b^m = p(s_{tm} = 0 | s_{(t-1)m} = 1) \end{array}$$

$$\mathbf{S} \sim \mathrm{MIBP}(\alpha, \beta_0, \beta_1)$$

Can be obtained by defining the transition probabilities

$$\mathbf{A}^{m} = \begin{bmatrix} a^{m} & 1 - a^{m} \\ b^{m} & 1 - b^{m} \end{bmatrix} \qquad a^{m} = p(s_{tm} = 0 | s_{(t-1)m} = 0) \\ b^{m} = p(s_{tm} = 0 | s_{(t-1)m} = 1)$$

...with priors

$$a^m \sim \operatorname{Beta}\left(1, \frac{\alpha}{M}\right) \qquad b^m \sim \operatorname{Beta}(\beta_0, \beta_1)$$

• ... and let $M \to \infty$

$$\mathbf{S} \sim \text{MIBP}(\alpha, \beta_0, \beta_1)$$

Can be obtained by defining the transition probabilities

$$\mathbf{A}^{m} = \begin{bmatrix} a^{m} & 1 - a^{m} \\ b^{m} & 1 - b^{m} \end{bmatrix} \qquad a^{m} = p(s_{tm} = 0 | s_{(t-1)m} = 0) \\ b^{m} = p(s_{tm} = 0 | s_{(t-1)m} = 1)$$

...with priors

$$a^m \sim \operatorname{Beta}\left(1, \frac{\alpha}{M}\right) \qquad b^m \sim \operatorname{Beta}(\beta_0, \beta_1)$$

- ... and let $M \to \infty$
- After integrating out a^m and b^m :

$$\lim_{M \to \infty} p([\mathbf{S}]) = \frac{\alpha^{M+}}{\prod_{h=1}^{2^{T}} M_{h}!} e^{-\alpha H_{T}} \prod_{m=1}^{M+} \frac{(n_{01}^{m} - 1)!(n_{00}^{m})!\Gamma(\beta_{0} + \beta_{1})\Gamma(\beta_{0} + n_{10}^{m})\Gamma(\beta_{1} + n_{11}^{m})}{(n_{00}^{m} + n_{01})!\Gamma(\beta_{0})\Gamma(\beta_{1})\Gamma(\beta_{0} + \beta_{1} + n_{10}^{m} + n_{11}^{m})}$$

Markov exchangeable in the rows.

OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS
 Infinite Factorial Unbounded-State HMM
 Infinite Factorial Finite State Machine
- 4 Conclusions

OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- **3** Contributions

Infinite Factorial Unbounded-State HMM Infinite Factorial Finite State Machine

4 Conclusions

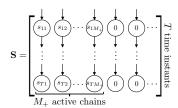
NON-BINARY INFINITE FACTORIAL HMM

- Generalization of the MIBP for non-binary matrices.
- Each state $s_{tm} \in \{0, 1, \dots, Q 1\}.$
- Inactive state ($s_{tm} = 0$).

$$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1M_{+}} & 0 & 0 & \cdots \\ s_{21} & s_{22} & \cdots & s_{2M_{+}} & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ s_{T1} & s_{T2} & \cdots & s_{TM_{+}} & 0 & 0 & \cdots \end{bmatrix} \overset{\mathbf{S}}{\text{tille}} \overset{\mathbf{H}}{\text{tille}}$$

$$M_{+} \text{ non-zero columns}$$

$$M \text{ columns (chains)}$$



Non-Binary Infinite Factorial HMM

Can be obtained by defining the transition probabilities

$$\mathbf{A}^{m} = \left[\begin{array}{cccc} a_{00}^{m} & a_{01}^{m} & \cdots & a_{0(Q-1)}^{m} \\ a_{10}^{m} & a_{11}^{m} & \cdots & a_{1(Q-1)}^{m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(Q-1)0}^{m} & a_{(Q-1)1}^{m} & \cdots & a_{(Q-1)(Q-1)}^{m} \end{array} \right]$$

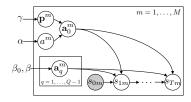
Can be obtained by defining the transition probabilities

$$\mathbf{A}^{m} = \begin{bmatrix} a_{00}^{m} & a_{01}^{m} & \cdots & a_{0(Q-1)}^{m} \\ a_{10}^{m} & a_{11}^{m} & \cdots & a_{1(Q-1)}^{m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(Q-1)0}^{m} & a_{(Q-1)1}^{m} & \cdots & a_{(Q-1)(Q-1)}^{m} \end{bmatrix} \qquad \gamma - \alpha_{1(Q-1)(Q-1)}^{m}$$

Prior distribution:

$$\mathbf{a}^m \sim \mathrm{Beta}\left(1, \frac{\alpha}{M}\right) \qquad \mathbf{p}^m \sim \mathrm{Dirichlet}(\gamma)$$
 $\mathbf{a}_0^m = \left[\mathbf{a}^m \quad (1 - \mathbf{a}^m)\mathbf{p}^m\right]$

$$\mathbf{a}_{q}^{m} \sim \text{Dirichlet}(\beta_{0}, \beta, \dots, \beta), \quad q = 1, \dots, Q - 1$$



$$\lim_{M \to \infty} p([S]) = \frac{(Q-1)!}{(Q-N_Q)! N_f} \frac{\alpha^{M_+}}{Q^{T_{-1}}} e^{-\alpha H_T}$$

$$\times \prod_{m=1}^{M_+} \left[\frac{\Gamma(n_{00}^m + 1) \Gamma\left(\sum_{i=1}^{Q-1} n_{0i}^m\right)}{\Gamma(n_{0\bullet}^m + 1)} \frac{\Gamma\left((Q-1)\gamma\right) \prod_{i=1}^{Q-1} \Gamma(n_{0i}^m + \gamma)}{\Gamma\left(\sum_{i=1}^{Q-1} (n_{0i}^m + \gamma)\right) (\Gamma(\gamma))^{Q-1}} \right]$$

$$imes \prod_{q=1}^{Q-1} \left(rac{\Gamma\left(eta_0 + (Q-1)eta
ight)}{\Gamma(eta_0)\left(\Gamma(eta)
ight)^{Q-1}} rac{\Gamma(n_{q0}^m + eta_0)\prod\limits_{i=1}^{Q-1}\Gamma(n_{qi}^m + eta)}{\Gamma\left(n_{qullet}^m + eta_0 + (Q-1)eta
ight)}
ight)
ight].$$

$$Q = 3$$
 states (1 inactive + 2 active)

$$t = 1$$

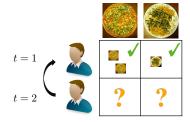
$$Q = 3$$
 states (1 inactive $+$ 2 active)

t=1

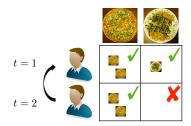
$$Q = 3$$
 states (1 inactive $+$ 2 active)

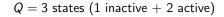
t = 1

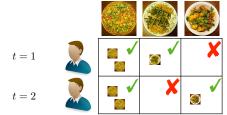
$$Q = 3$$
 states (1 inactive $+$ 2 active)

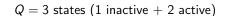


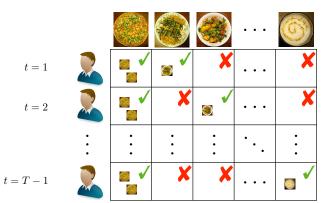
$$Q = 3$$
 states (1 inactive $+$ 2 active)

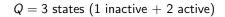


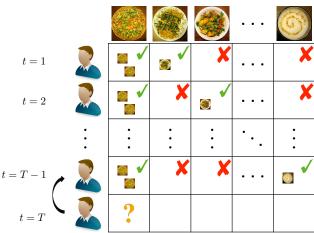




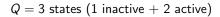


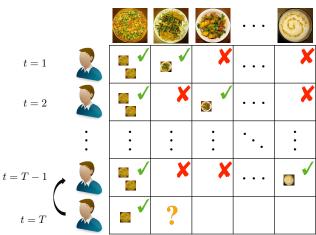




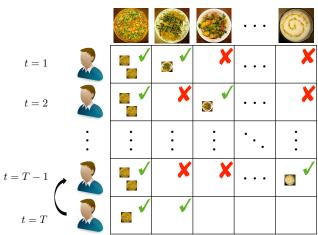


 $p(s_{T1} = 0) \propto \beta_0 + n_{20}^1$ $p(s_{T1} = 1) \propto \beta + n_{21}^1$ $p(s_{T1} = 2) \propto \beta + n_{22}^1$



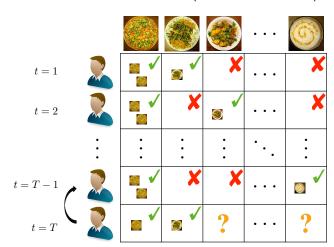


 $p(s_{T2} = 0) \propto 1 + n_{00}^2$ $p(s_{T2} \neq 0) \propto n_{01}^2 + n_{02}^2$

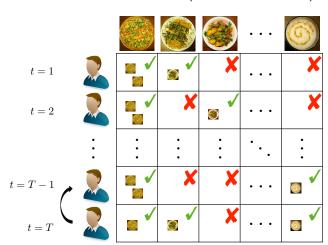


 $p(s_{T2} = 1) \propto \gamma + n_{01}^2$ $p(s_{T2} = 2) \propto \gamma + n_{02}^2$

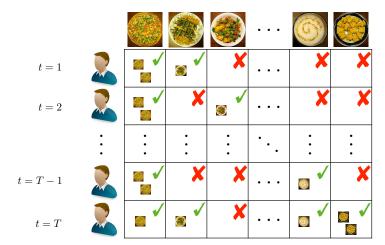
Q = 3 states (1 inactive + 2 active)



Q = 3 states (1 inactive + 2 active)



Q = 3 states (1 inactive + 2 active)



Q = 3 states (1 inactive + 2 active)

					• • •	(G)	
t = 1		2	1	0		0	0
t = 2		2	0	1		0	0
	•	:	:	:	٠	•	:
t = T - 1		2	0	0		1	0
t = T		1	1	0		1	2

Q = 3 states (1 inactive + 2 active)

					• • •		(G)
t = 1		0	2	0		1	0
t = 2		1	2	0		0	0
	:	:	:	•	٠	•	•
t = T - 1		0	2	0		0	1
t = T		0	1	2		1	1

Q = 3 states (1 inactive + 2 active)

					• • •		(G)
t = 1		0	1	0		2	0
t = 2		2	1	0		0	0
	:	:	:	•	٠	•	:
t = T - 1		0	1	0		0	2
t = T		0	2	1		2	2

FIXED Q

- MCMC:
 - Sample from the posterior.
 - Blocked sampling approach.
 - $\bullet \ \, {\sf Slice \ sampling} \to \\ \, {\sf Stick-breaking \ construction}. \\$
 - FFBS for each Markov chain.
- Variational:
 - Approximate the posterior.
 - Structured approach.
 - Involves a forward-backward algorithm.

FIXED Q

- MCMC:
 - Sample from the posterior.
 - Blocked sampling approach.
 - $\bullet \ \, {\sf Slice \ sampling} \to \\ \, {\sf Stick-breaking \ construction}. \\$
 - FFBS for each Markov chain.
- Variational:
 - Approximate the posterior.
 - Structured approach.
 - Involves a forward-backward algorithm.

Infinite Factorial Unbounded-State HMM

Prior over the number of states:

$$Q = 2 + Q',$$
 $Q' \sim \text{Poisson}(\lambda)$

FIXED Q

- MCMC:
 - Sample from the posterior.
 - Blocked sampling approach.
 - $\bullet \ \, {\sf Slice \ sampling} \to \\ \, {\sf Stick-breaking \ construction}. \\$
 - FFBS for each Markov chain.
- Variational:
 - Approximate the posterior.
 - Structured approach.
 - Involves a forward-backward algorithm.

Infinite Factorial Unbounded-State HMM

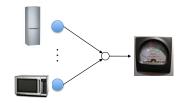
• Prior over the number of states:

$$Q = 2 + Q',$$
 $Q' \sim \text{Poisson}(\lambda)$

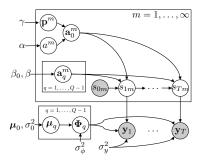
Unknown Q

- MCMC:
 - Based on reversible jump MCMC.
 - Integrate out dimension-changing variables.
 - Updating variables:
 - Q: Split/merge, birth/death.
 - M₊: Slice sampling.

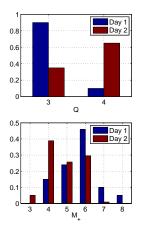
- Estimate the power consumption of each device.
- Non-invasive measurements.
 - Improve efficiency of consumers.
 - Detect faulty equipment.
- Two datasets.
 - REDD (1 day, 5 houses, 6 devices).
 - AMP (2 days, 1 house, 8 devices).



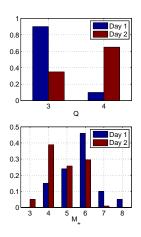
Gaussian observation model

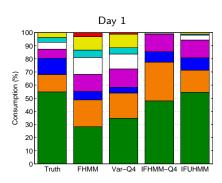


Results for the AMP database (2 days, 8 devices):

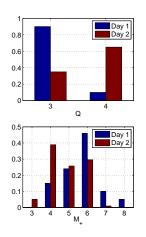


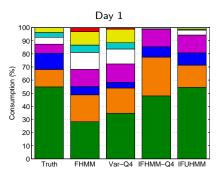
Results for the AMP database (2 days, 8 devices):





Results for the AMP database (2 days, 8 devices):

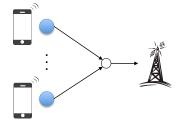




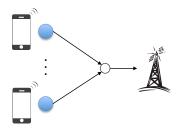
$$\text{accuracy} = 1 - \frac{\sum_{t=1}^{T} \sum_{m=1}^{M} |y_{t}^{(m)} - \hat{y}_{t}^{(m)}|}{2 \sum_{t=1}^{T} \sum_{m=1}^{M} y_{t}^{(m)}}$$

FHMM	Var-Q4	IFHMM-Q4	IFUHMM
0.36 ± 0.05	0.48 ± 0.06	0.58 ± 0.11	0.69 ± 0.10

MULTIUSER COMMUNICATION SYSTEM



MULTIUSER COMMUNICATION SYSTEM



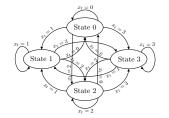
Multipath propagation

OUTLINE

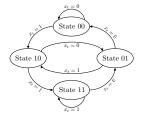
- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS
 Infinite Factorial Unbounded-State HMN
 Infinite Factorial Finite State Machine
- 4 Conclusions

FINITE-MEMORY FINITE STATE MACHINE

Finite-Memory FSM: The state depends on the last L inputs x_t .



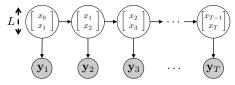
HMM with Q=4 states. Dense transition probability matrix.



FSM with memory length L=2. Sparse transition probability matrix.

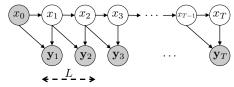
Infinite Factorial Finite State Machine

• HMM representation of an FSM:

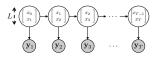


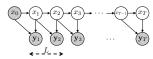
State space cardinality: $|\mathcal{X}|^L$.

Alternative representation (likelihood accounts for the memory):

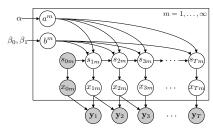


The likelihood accounts for the memory.





- Infinite Factorial FSM:
 - $M \to \infty$ parallel FSMs.
 - $S \sim MIBP(\alpha, \beta_0, \beta_1)$.
 - Auxiliary variables s_{tm} indicate activity/inactivity.
 - $x_{tm} = 0$ if $s_{tm} = 0$ and $x_{tm} \in A$ otherwise.



Inference

MCMC inference algorithm:

- Propose new parallel FSMs.
 - Slice sampling.
 - Stick-breaking construction.
- **2** Update hidden states x_{tm} , s_{tm} .
 - Particle Gibbs with ancestor sampling.
- Remove inactive FSMs.
- Sample global variables.

Inference

MCMC inference algorithm:

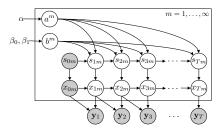
- Propose new parallel FSMs.
 - · Slice sampling.
 - Stick-breaking construction.
- **2** Update hidden states x_{tm} , s_{tm} .
 - Particle Gibbs with ancestor sampling.
- Remove inactive FSMs.
- Sample global variables.

PARTICLE GIBBS WITH ANCESTOR SAMPLING

- Combines MCMC and SMC.
- Better mixing properties than FFBS.
- Outperforms FFBS:
 - Quadratic complexity with memory L.
 - Can handle more general models.

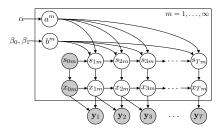
GENERALIZATION OF THE MODEL

- Extensions that we can easily handle:
 - States x_{tm} do not necessarily belong to finite set.
 - The state x_{tm} depends on $x_{(t-1)m}$.



GENERALIZATION OF THE MODEL

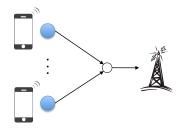
- Extensions that we can easily handle:
 - States x_{tm} do not necessarily belong to finite set.
 - The state x_{tm} depends on $x_{(t-1)m}$.



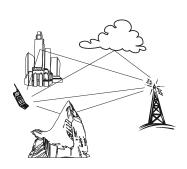
- Applications:
 - Multi-target tracking.
 - Speech separation.
 - •

Multiuser Communication System

- Estimate the number of users and the transmitted symbols.
- Machine-to-machine communications:
 - Transmitters switching on and off asynchronously.
 - Short bursts of symbols.
 - Reduce message overhead.
 - 5G systems.

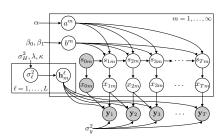


Multipath propagation



Gaussian observation model

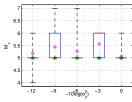
$$\mathbf{y}_t = \sum_{m=1}^{M_+} \sum_{\ell=1}^L \mathbf{h}_m^\ell \mathbf{x}_{(t-\ell+1)m} + \mathbf{n}_t$$

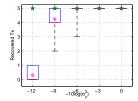


Synthetic experiment with 5 transmitters and 20 receivers.

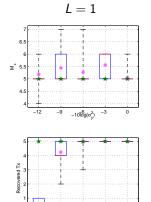
$$L=1$$

Synthetic experiment with 5 transmitters and 20 receivers.

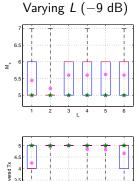


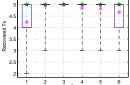


Synthetic experiment with 5 transmitters and 20 receivers.



0





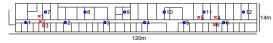
Wi-Fi experiment:

- Ray-tracing software (WISE).
- 6 transmitters, 12 receivers.
- Office at Bell Labs Crawford Hill.



Wi-Fi experiment:

- Ray-tracing software (WISE).
- 6 transmitters, 12 receivers.
- Office at Bell Labs Crawford Hill.

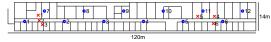


• Recovered transmitters / Inferred *M*₊:

	Algorithm	L					
		1	2	3	4	5	
	PGAS	6/6	6/6	6/6	6/6	6/6	
	FFBS	3/11	3/11	3/8	1/10	_	

Wi-Fi experiment:

- Ray-tracing software (WISE).
- 6 transmitters, 12 receivers.
- Office at Bell Labs Crawford Hill.



Recovered transmitters / Inferred M₊:

Algorithm	L				
Algorithm	1	2	3	4	5
PGAS	6/6	6/6	6/6	6/6	6/6
FFBS	3/11	3/11	3/8	1/10	_

• MSE $(\times 10^{-6})$ of the first channel tap $(\ell = 1)$:

Algorithm	L				
Algoritim	1	2	3	4	5
PGAS	2.58	2.51	0.80	0.30	0.16
FFBS	2.79	1.38	5.53	1.90	_
				0.	

(noise variance is $\sim 10^{-8}$)

OUTLINE

- 1 Introduction
- 2 Bayesian Nonparametrics
- 3 CONTRIBUTIONS Infinite Factorial Unbounded-State HMN Infinite Factorial Finite State Machine
- 4 Conclusions

Conclusions

CONTRIBUTIONS

- Non-Binary Infinite Factorial HMM.
 - MCMC inference.
 - Variational inference.
- Infinite Factorial Unbounded-State HMM.
 - MCMC inference.
- Infinite Factorial Finite State Machine.
 - Particle MCMC inference.

Conclusions

CONTRIBUTIONS

- Non-Binary Infinite Factorial HMM.
 - MCMC inference.
 - Variational inference.
- Infinite Factorial Unbounded-State HMM.
 - MCMC inference.
- Infinite Factorial Finite State Machine.
 - Particle MCMC inference.

FUTURE WORK

- Doubly nonparametric IFHMM.
- Semi-Markov approaches.
- Inference:
 - Scalability.
 - Mixing of MCMC.
 - Online.
- Other applications.
- Time-varying channels.

Thanks for your attention!

BINARY IFHMM FOR POWER DISAGGREGATION

- REDD dataset (5 houses, 1 day, 6 devices).
- Binary IFHMM (Q = 2).
- Histogram of inferred M_+ :

