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Poisson Multi-Bernoulli Mapping
Using Gibbs Sampling

Maryam Fatemi, Karl Granström, Lennart Svensson, Francisco J. R. Ruiz, and Lars Hammarstrand

Abstract—This paper addresses the mapping problem. Using a
conjugate prior form, we derive the exact theoretical batch multi-
object posterior density of the map given a set of measurements.
The landmarks in the map are modeled as extended objects, and
the measurements are described as a Poisson process, conditioned
on the map. We use a Poisson process prior on the map and prove
that the posterior distribution is a hybrid Poisson, multi-Bernoulli
mixture distribution. We devise a Gibbs sampling algorithm
to sample from the batch multi-object posterior. The proposed
method can handle uncertainties in the data associations and
the cardinality of the set of landmarks, and is parallelizable,
making it suitable for large-scale problems. The performance of
the proposed method is evaluated on synthetic data and is shown
to outperform a state-of-the-art method.

Index Terms—Statistical mapping, extended object, Monte
Carlo methods, inference algorithms, sampling methods, Gibbs
sampling.

I. INTRODUCTION

During recent years, self-driving cars have been the subject
of extensive research. Many different functionalities expected
from a self-driving vehicle are facilitated by having accurate
localization and mapping capabilities. These capabilities re-
quire information of the environment which is gained by on-
board sensors such as radars, cameras and internal sensors. The
problem of mapping an unknown environment and estimating
the unknown trajectory of the vehicle concurrently is referred
to as simultaneous localization and mapping (SLAM) [1] [2].
SLAM has attracted a lot of attention, especially in the robotics
community. Examples of SLAM algorithms are EKF-SLAM
[3] [4], FastSLAM [5], LMB-SLAM [6] and Graph-SLAM
[7]. The map produced by these methods is a statistical map
of the environment as viewed by a particular sensor. To achieve
higher positioning accuracy, it is common to separate the
localization and mapping problems. In this case, the statistical
mapping problem is solved offline using data from a vehicle
equipped with a reference positioning system [8] [9] [10]. In
such a system, if the position uncertainties are negligible, the
focus can be on the statistical mapping.

Mapping has been addressed in, e.g., [10], [11] and [12].
Two aspects that make the problem challenging are the un-
known data association between the measurements and the
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landmarks, and the unknown number of landmarks. In [11] and
[12], these two aspects are addressed through representing the
map and the measurements as random finite sets (RFS), thus
incorporating the uncertainties in the data association and the
number of landmarks into the model. They use the probability
hypothesis density (PHD) filter [13] to recursively approximate
the posterior density of the map. In addition, [11] and [12]
model the sensor detections as point objects, i.e., each object
can generate at most one measurement at each time step. For
some automotive sensors, the distance to landmarks is often
such that a landmark is covered by more than one resolution
cell of the sensor. It is therefore more reasonable to use an
extended object model, where each object can generate more
than one measurement at each time step.

A commonly used measurement model for extended objects
is the inhomogeneous Poisson point process (PPP) proposed
in [14]. In this model, a detected object generates a Poisson
distributed number of measurements, and these measurements
are spatially distributed around the object. This extended
object model has been used in [10], [15], [16], [17]. In [10], the
authors present a vector-based extended object mapping, where
a variational Bayesian expectation maximization (VBEM)
algorithm [18] is used to approximate the posterior. In the
algorithm presented in [10], the data associations and the map
are jointly estimated; however, the uncertainty of the number
of landmarks is not taken into account.

In the mapping problem, where the landmarks are assumed
to be extended objects, we need to cluster together the
measurements that were generated by the same landmark in
order to infer the properties of that landmark. However, the
number of clusters is unknown because it corresponds to the
number of landmarks. This resembles the problem addressed
in the Bayesian nonparametric (BNP) literature [19] [20].
The BNP approach consists in fitting a model that can adapt
its complexity to the observed data [20]. In particular, the
Dirichlet process (DP) [21] defines a prior distribution over
an infinite-dimensional parameter space, ensuring that only
a finite number of parameters are needed to generate any
finite dataset. The posterior distribution reveals the number of
parameters (clusters) that best fit the data. Both Markov Chain
Monte Carlo (MCMC) methods [22] [23] and variational
methods [24] have been proposed to perform inference in this
context, where the former is the most widely used method of
inference [20].

In this paper, we develop an MCMC method to estimate sen-
sor maps that contain extended objects. The proposed method
can be applied to any sensor that is subject to false alarms,
missed detections, and data association uncertainty. The prior
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of the map is modeled by a Poisson process which can
incorporate the uncertainty regarding the number of landmarks
in a systematic manner, which gives important advantages
compared to, e.g., the method of [10], where the prior of
the map does not incorporate uncertainties in the number of
landmarks. Therefore, our method is capable of handling the
uncertainties in both data associations and unknown number
of landmarks. We derive the exact batch multi-object posterior
density of the map using the conjugate prior form described in
[25].1 To estimate the posterior, we derive a collapsed Gibbs
sampling [22] [23] algorithm which is analogous to widely
used Gibbs sampling methods in BNP. We show that our
method has the advantage of being parallelizable, making it
suitable for large scale problems.

The paper is organized as follows. The problem formulation
is presented in Section II. Because in our derivations we make
extensive use of the results given in [25], Section III presents
a background on this paper. The batch posterior density is de-
rived in Section IV followed by the proposed sampling method
in Section V, where the similarities and differences between
an alternative BNP approach and the proposed method are
discussed. The inference algorithm is evaluated on a simulated
scenario in Section VII and conclusions are made in Section
VIII.

II. PROBLEM FORMULATION

We are interested in mapping an area of interest (AOI). A
vehicle equipped with a sensor navigates the AOI and collects
data at discrete time steps, and our task is to construct a
statistical model of those measurements as a function of the
sensor pose. At each time instance the sensor only measures
within its limited field of view (FOV) and the union of all
these FOVs outlines the complete observed area (OA). In some
scenarios the vehicle does not visit all parts of the AOI, in
which case the OA is a subset of the AOI. Because of this,
it is necessary to reason about both the parts of the AOI that
have been observed, and the parts of the AOI that have not
been observed.

The AOI is assumed to contain objects, here called land-
marks. The map is the set of landmarks described by an RFS
Θ, for which the cardinality and the properties (distribution)
of its members are unknown. Each landmark is modelled as
an elliptical extended object described by the landmark state
θ containing its 2D position µ, extent modelled as a random
matrix Σ, and expected number of measurements ω.

Mapping of the AOI is to estimate the batch posterior
density of the set of landmarks given the set of collected
measurements from K time steps, i.e., f(Θ|Z), where Z =
Z1

⋃
Z2...

⋃
ZK is the union of K sets of measurements.

These measurements are modelled by the standard PPP ex-
tended object measurement model. Since the OA is a subset
of the AOI, it is suitable to model the set of landmarks as
the union of two disjoint subsets: a set of detected landmarks
Θd and a set of undetected landmarks Θu. The detected
landmarks are within the OA, while the undetected ones

1An extended version of this paper was presented in [26], where the proof
of conjugacy is included.

are mostly outside the OA. However, because of detection
uncertainty, there is a non-zero probability that there is one or
more undetected landmarks inside the OA. The batch posterior
density, denoted by f(Θ|Z), is a Poisson MBM (PMBM)
density. For the standard PPP extended object measurement
model [14], this is a conjugate prior [25].

In what follows, we describe the models and assumptions
based on which we derive f(Θ|Z) in Section IV. The models
and derivations are based on finite set statistics [27]. RFS
based methods [27] facilitate statistical inference in problems
where the variables of interest and/or the measurements are
modelled as finite sets. These methods are specially attrac-
tive because they can accommodate uncertainties in both
the number of variables and their states. These two aspects
match the statistical mapping problem very well since we are
interested in estimating the number of landmarks as well as
their properties. A brief overview of some key concepts of the
random set theory required for following the presented models
and the derivations, such as the distribution of a set-valued
variable and its probability generating functional (p.g.fl), is
given in Appendix A.

A. Standard extended object measurement model
In the standard extended object measurement model [27,

pp. 431-432] [14], it is assumed that the measurements form
an RFS that is the union of two independent RFSs: one for
landmark generated measurements, and one for clutter. The
clutter is modelled by a PPP with rate λc and spatial density
c(z). The p.g.fl of the clutter measurement model is

Gck[g] = exp(λc〈c; g〉 − λc)
= exp(〈κ; g〉 − 〈κ; 1〉), (1)

where κ(z) = λcc(z) is the clutter PPP intensity.
A landmark is detected at time k with state dependent

probability of detection pkD(θ). Measurements generated from
landmarks are modelled by a PPP with rate γk(θ) and spa-
tial distribution φ(zk|θ). The conditional set likelihood of
extended landmark measurements is expressed as [25]

lzk
(θ) = pkD(θ)p(Zk|θ)

= pkD(θ)e−γk(θ)
∏

zk∈Zk

γk(θ)φ(zk|θ). (2)

The Poisson rate γk(θ) models the expected number of detec-
tions from a landmark with state θ.

The p.g.fl of the measurement model of a single extended
landmark is

Glk[g|θ] = 1− pkD(θ) + pkD(θ) exp(γ〈φ; g〉 − γ) (3)

where 〈φ; g〉 =
∫
φ(z|θ)g(z)dz is a function of θ. It is

assumed that the measurements originated from different land-
marks are independent, therefore, the p.g.fl of the measurement
model of multiple landmarks can be described by

Glk[g|Θ] =
(
1− pkD(θ) + pkD(θ) exp(γ〈φ; g〉 − γ)

)Θ
. (4)

Using (58), (1) and (4) the p.g.fl for the complete set of
measurements can be expressed by

Gk[g|Θ] = Gck[g]Glk[g|Θ]. (5)
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B. Modelling assumptions

The prior RFS density of the map is described by a PPP.
The map is assumed to be static, i.e., the appearance of
landmarks on the map or their disappearance from the map
is not accounted for in this work.

It is further assumed that the measurement batch contains
measurements from K time steps, and is denoted by the
set Z. A data association hypothesis over Z describes which
measurements belong to which landmark, and partitions this
set into non-empty subsets, called cells, whose members
belong to the same landmark. The ith cell in partition j is
denoted by Cj,i, further,⊎

i

{Cj,i} = Z,∀j. (6)

In each cell we group the measurements by their time tags.
Measurements with time tag k form a set denoted by Vj,i

k ,
therefore, ⊎

k

{Vj,i
k } = Cj,i,∀j, i. (7)

Note that Vj,i
k could possibly be empty for some k, as each

landmark is within the FOV for a limited number of time steps.
In the clutter model described by (1), we assume that clutter

measurements are uniformly distributed over the field of view
of the sensor, i.e.,

c(z) = V −1, (8)

where V is the observation volume of the sensor. In (2), we
model

γk(θ) = ωf(µ,xk) (9)

where ω is the expected number of detections generated by a
landmark, µ is the 2D position of the landmark, xk is the pose
of the sensor at time k, and f(µ,xk) is the FOV function. This
function is equal to one if µ is in the FOV at time k, and zero
otherwise. The connection between the sensor’s field of view
and the extent of a landmark is not taken into consideration
for simplicity. This implies that a landmark is assumed to be
outside the FOV if its centre is outside the FOV, even if a part
of its extent is inside. The spatial distribution is modelled as

φ(zk|θ) = N (zk;µ,Σ), (10)

where Σ is a random matrix that describes the landmark
extent. In addition, this model assumes that landmark mea-
surements are generated by the centroid of the landmark, and
since in reality the measurements could have been generated
from any scattering point on the landmark, the measurement
error corresponds to the extent of the landmark [28]. In this
model it is assumed that the sensor measurement noise is
negligible compared to a landmark’s extent. That is, if Σ0

is the true extent and R the measurement noise covariance, it
is assumed that R is small compared to Σ0. More specifically,
the measurement covariance in (10) is the added effect of Σ0

and R, and is approximated as Σ = Σ0 + R ≈ Σ0.

III. BACKGROUND

In this section we present a summary of the sequential pos-
terior RFS density for multiple extended objects. The reader
is referred to [25] and [26] for a comprehensive description.

In [26], the authors prove that a Poisson multi-Bernoulli
mixture (PMBM) RFS density is a conjugate prior for the
Poisson extended object measurement model (presented in
Section II-A). In addition, it is shown that updating a Poisson
prior with this measurement model results in a PMBM poste-
rior. Therefore, for a batch problem, if the prior is a Poisson
process, the posterior resulting from the batch update would
be PMBM.

In this section the results of [25] are summarized. Note that
only the results for the update step are presented here, this is
because in this paper we are dealing with a static state (map)
and there is no need to perform a prediction step. That is, it
can be said that the predicted density is equal to the posterior
density of the previous time step.

Similar to Section II, the set of landmarks Θ is divided
into two disjoint subsets of detected and undetected landmarks
denoted by Θd and Θu, respectively. It is assumed that the
p.g.fl of the prior density at time k + 1 is

Gk[h] = Guk [h]Gdk[h], (11)

where

Guk [h] = exp (λuk〈fuk ;h〉 − λuk) (12)

Gdk[h] =

Nk∑
j=1

W j
k

Ijk∏
i=1

(1− rj,ik + rj,ik 〈f
j,i
k ;h〉), (13)

the Poisson rate of the undetected landmarks at time k is
denoted by λuk , and fuk is the spatial density of undetected
landmarks at time k. The p.g.fl of detected landmarks is an
MBM where the weight of the jth multi-Bernoulli component
is denoted by W j

k . This component corresponds to a partition-
ing of the set Zk that consists of Ijk cells each denoted by
Cj,i. A cell refers to a subset of Zk that cannot be empty.
Accordingly, Nk is the number of ways that the set Zk can
be partitioned into different cells, and it is equal to the Bell
number of order |Zk| [29]. In each partition, measurements
assigned to the same cell are assumed to have originated
from the same source, i.e., the same landmark or clutter. The
probability of existence of a landmark corresponding to cell
Cj,i is rj,ik and its spatial density is denoted by f j,ik .

The update step has two parts, updating the undetected
landmarks, and updating the previously detected ones. Upon
receiving the measurements at time k + 1, the set Zk+1 is
split into two subsets, namely, measurements not generated
by previously detected landmarks Yk+1, and measurements
generated by previously detected landmarks Zk+1\Yk+1. The
newly detected landmarks will form a MB RFS, conditioned
on a partitioning P of the set Yk+1,

GPk+1[h] =
∏

Υ∈P
(1− rΥ + rΥ〈fΥ;h〉), (14)
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where

rΥ =

{
1 if |Υ| > 1
LΥ

κΥ+LΥ
if |Υ| = 1

(15)

fΥ(θ) =
lΥ(θ)λukf

u
k (θ)

λuk〈fk; lΥ〉
(16)

LΥ = λuk〈fk; lΥ〉. (17)

Here, a cell of the partition P is denoted by Υ, and |Υ| denotes
the cardinality of the set Υ. In addition, lΥ is the conditional
set likelihood described in (2). The rate and spatial density of
the PPP process for undetected landmarks are expressed by

λuk+1 = λuk〈fuk ; qk+1
D 〉 (18)

fuk+1(θ) =
qk+1
D (θ)fuk (θ)

〈fuk ; qk+1
D 〉

(19)

qk+1
D (θ) = 1− pk+1

D (θ) + pk+1
D (θ)e−γk+1(θ), (20)

where qk+1
D is the effective probability of missed detection at

time k + 1, pk+1
D is the probability of detection and γk+1(θ)

is the intensity of the PPP process of the measurements.
The set Zk+1\Yk+1 contains measurements originated from

the previously detected landmarks, and is partitioned into
disjoint, possibly empty, subsets Vj,i

k+1. The multi-Bernoulli
component corresponding to this set is described by

G
{Vj,i

k+1}i
k+1|k+1[h] =

∏
i

(1− rj,ik+1 + rj,ik+1〈f
j,i
k+1;h〉) (21)

where
⊎
i{V

j,i
k+1} = Zk+1\Yk+1,∀j. In addition, the proba-

bilities of existence, the spatial distributions and the predicted
likelihoods depend on the cardinality of the disjoint subsets.
That is, if Vj,i

k+1 6= ∅,

rj,ik+1 = 1 (22)

f j,ik+1(θ) =
lj,ik+1(θ)f j,ik (θ)

〈f j,ik ; lj,ik+1〉
(23)

LVj,i
k+1

k+1 = rj,ik 〈f
j,i
k ; lj,ik+1〉. (24)

If Vj,i
k+1 = ∅,

rj,ik+1 =
rj,ik 〈f

j,i
k ; qk+1

D 〉
1− rj,ik + rj,ik 〈f

j,i
k ; qk+1

D 〉
(25)

f j,ik+1(θ) =
qk+1
D (θ)f j,ik (θ)

〈f j,ik ; qk+1
D 〉

(26)

LVj,i
k+1

k+1 = 1− rj,ik + rj,ik 〈f
j,i
k ; qk+1

D 〉. (27)

In (22) the existence probability of object i in global hypothe-
sis j is equal to one. However, note that global hypothesis j is
not certain, but has a probability W j

k ∈ [0, 1]. Consequently,
(22) merely implies that object i exists with probability 1
conditioned on hypothesis j.

The weight of each multi-Bernoulli component is computed
by the predicted partition likelihood

LP =
∏

Υ∈P |Υ|>1

LΥ ×
∏

Υ∈P |Υ|=1

(κΥ + LΥ), (28)

and the predicted MB likelihood

L{V
j,i
k+1}i

k+1 =
∏
i

LVj,i
k+1

k+1 . (29)

IV. BATCH MULTI-OBJECT POSTERIOR DENSITY

In this section, we present the exact theoretical multi-object
batch posterior density. This distribution is calculated by per-
forming a batch update using all the collected measurements.
Naturally, we expect the batch posterior to be the same as
the sequential posterior after having updated the latter with all
collected measurements.

A. The batch update

The resulting batch multi-object posterior density has a
PMBM form where the PPP part describes the posterior of
the undetected landmarks and the MBM part describes the
posterior of the detected landmarks and the clutter. The multi-
object batch density and the update for parameters of the PPP
and the MBM are described in Theorem 1, the proof of which
is presented in Appendix B.

Theorem 1. The multi-object batch posterior density of the
map Θ given the set of measurements Z has a PMBM form
and is expressed as

f(Θ) =
∑

Θd⊂Θ


NK∑
j=1

W j
K

∑
αj∈P |Θd|

I
j
K

IjK∏
i=1

f j,iK (Θαj(i))

×
e−λu

K

∏
θ∈(Θ\Θd)

λuKf
u
K(θ)

 , (30)

where the first factor describes an MBM, the second factor
is a PPP and the entire set Θ is the union of these disjoint
sets. In the MBM, the index j describes a partitioning of an
entire set of the measurements and represents an MB in the
mixture, whereas, the index i corresponds to different Bernoulli
components in an MB. The mapping P

|Θd|
IjK

, defined in (78),
accounts for all different ways of assigning each Bernoulli of
each multi-Bernoulli component to a landmark for different
number of landmarks, and αj is a function that maps each
Bernoulli component of the j-th multi-Bernoulli into either a
landmark l ∈ {1, 2, ..., |Θd|} or clutter. In addition, Θαj(i) is
described by (79) and the index K denotes the final time step.

The parameters of the (j, i)-th Bernoulli component of the
MBM density corresponding to the set Z, the cell Cj,i and
subsets Vj,i

k are given by

f j,iK (θ) =
fu0 (θ)

∏K
k=1 l

j,i
k

〈fu0 ;
∏K
k=1 l

j,i
k 〉

(31)

rj,iK =

{
Lj,i

K

λcc(z)+Lj,i
K

if |Cj,i| = 1

1 if |Cj,i| > 1
, (32)
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where

lj,ik =

{
pkD(θ)e−γk(θ)

∏
z∈V j,i

k
γk(θ)φ(z|θ) Vj,i

k 6= ∅
qkD(θ) Vj,i

k = ∅
(33)

Lj,iK = λu0 〈fu0 ;

K∏
k=1

lj,ik 〉 (34)

and qkD(θ) = 1 − pkD(θ) + pkD(θ)e−γk(θ), is the effective
probability of missed detection at time k. The weight of each
multi-Bernoulli component, W j

K is expressed as

W j
K ∝

∏
i

Lj,iK (35)

where Lj,iK is the likelihood of the MB which corresponds to
cell i in partition j. This likelihood depends on |Cj,i| and is
described by

Lj,iK =

{
λcc(z) + Lj,iK |Cj,i| = 1

Lj,iK |Cj,i| > 1
. (36)

The PPP, which corresponds to the density of undetected
landmarks, does not depend on the measurements. The Poisson
rate and the spatial density of the PPP are expressed as

λuK = λu0 〈fu0 ;

K∏
k=1

qkD〉 (37)

fuK(θ) =
fu0 (θ)

∏K
k=1 q

k
D(θ)

〈fu0 ;
∏K
k=1 q

k
D〉

. (38)

In the MBM, each partition of the measurements indexed
by j represents an MB. Each cell in the jth partition (MB) is
denoted by Cj,i, corresponds to a Bernoulli component, and
is assumed to contain measurements belonging to the same
source (landmark). The probability of existence, expressed in
(32), is one for the Bernoulli components that have been as-
signed more than one measurement, i.e., the Bernoulli compo-
nents which correspond to |Cj,i| > 1. This is because, the clut-
ter process generates independent point measurements which
implies that two clutter measurements cannot be assigned to
the same cell. Accordingly, the probability of existence for
Bernoulli components associated with a single measurement
is less than one, since it is not certain whether this mea-
surement is generated by clutter or a landmark. According
to (31), the spatial density of each Bernoulli component of
the MBM originates from the spatial density of an undetected
landmark, and is calculated by updating the spatial density of
the undetected landmark with all the measurements assigned
to the corresponding Bernoulli component. Additionally, the
weight of each MBM, described in (35), is proportional to a
product of the likelihood of each cell.

In (37), the term 〈fu0 ;
∏K
k=1 q

k
D〉 is the probability that a

landmark with density fu0 (θ) is not detected from time 1 to
K. The effective probability of missed detection at time k
is qkD, which according to (33) could also be regarded as
the likelihood of an empty measurement set at time k. This
probability is 1 outside the FOV and lower inside. The rate of
the PPP describing undetected landmarks is decreased inside

the union of the FOVs that have been surveyed by the sensor.
This rate should be lowest over the areas which have been
surveyed the most. Outside the union of the surveyed FOVs,
λuK does not change. The spatial density of the undetected
landmarks given by (38) expresses that this density does
not change outside the union of the FOVs. Furthermore, the
changes to the spatial density inside the FOVs indicate that the
expected number of detections, parametrized in this density
through ω, should be decreased inside the FOVs.

B. Approximations

A major difficulty in computing the PMBM density in (30)
is the second summation which has NK terms, i.e., the Bell
number of order |Z|. Since the sequence of Bell numbers
grows very fast and set Z corresponds to the measurements
collected over many time steps, NK is possibly a very large
number. For example, for only 10 measurements, NK =
115975.

Given the level of complexity, computing the posterior
density exactly is intractable and there is a need to incorporate
appropriate approximations into the computations. Approx-
imating the posterior distribution is the central algorithmic
problem of Bayesian inference. Most Bayesian inference al-
gorithms can be grouped into variational methods and MCMC
methods. Variational inference approximates the posterior with
a simpler family of distributions, whose parameters are chosen
to minimize the Kullback-Leibler divergence between the
approximation and the true posterior [24] [30]. In contrast, in
MCMC methods, a Markov chain is defined over the hidden
variables such that the equilibrium distribution of this chain
is the true posterior [31] [22] [32]. Drawing samples from
the chain eventually results in obtaining samples from the
posterior. The advantage of MCMC methods is that the sample
distribution is generally guaranteed to converge to the posterior
provided that we draw enough samples. Variational inference
does not have such property [30].

In Section V, we present an inference algorithm based on
Gibbs sampling. Gibbs sampling is a simple form of MCMC
sampling where the Markov chain is constructed by sampling
from conditional distributions of each hidden variable given
the rest of the variables and the measurements.

V. SAMPLING THE PARTITIONS

In this section, we present an MCMC based inference
method. As the parameter space of the map can be quite
large, sampling from those parameters could result in a slow
and inefficient inference algorithm. However, using certain
assumptions, the model structure enables us to marginalize all
the continuous variables analytically, which has been demon-
strated to substantially improve the mixing properties of the
Gibbs sampler [23]. Therefore, inspired by the same situation
in Dirichlet process inference methods which deal with the
situation where the number of classes is unknown [23], we
devise an efficient algorithm to sample from the distribution
of the partitions, i.e., the distribution of the data association
hypotheses over the complete batch of measurements.
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Each sample is a partition of the measurements which corre-
sponds to an MB in the MBM described in (30). That is, each
sample corresponds to a distribution of the detected landmarks.
To calculate an estimated map, we perform an averaging over
the landmarks present in the substantial number of the final
samples of the chain (avoiding the burn-in samples).

In this section we focus on inferring the posterior density
of the detected landmarks, i.e.,

fθd(Θd) =

NK∑
j=1

W j
K

∑
αj∈Pn

I
j
K

IjK∏
i=1

f j,iK (Θαj(i)), (39)

where the index j describes the partitioning P of the entire
set of data. We can now give j a probabilistic interpretation,
and observe that the joint distribution over the partition and
the detected landmarks, described by

f(Θd, j) = W j
K

∑
αj∈P |Θ|d

I
j
K

IjK∏
i=1

f j,iK (Θαj(i)), (40)

matches the marginal distribution in (39).
Accordingly, the probability mass function of the partitions

can be obtained by marginalizing out the detected landmarks,

Pr{j} = W j
K . (41)

This distribution describes the probabilities of partitions of the
measurements, i.e., the probabilities of different data associ-
ation hypotheses over the batch of the measurements, which
are equal to the weights of each multi-Bernoulli component
W j
K . The ability to compute the weights, at least up to a

proportionality constant, is key to a sampling method that
samples from the partitions.

In this section a closed form solution for the computation
of the weights (up to a proportionality constant) is described
and a Gibbs sampler which can sample from the partitions is
proposed.

A. Computing the weights

Computing the weights in (41) is possible if the integral in
(34) has a closed form solution. To find a closed form solution
the following assumptions have been made: the probability
of detection is constant inside the field of view, and the
parameters of the map are a priori distributed according to
a conjugate prior form expressed by

p(µ) = U(µ),

p(Σ) = IW(Σ; S0, ν0)

p(ω) = GAM(ω;α0, β0), (42)

where U(µ) is a uniform distribution over the AOI. If we
denote this region by A, the uniform distribution can be
expressed as U(µ) = I(A)

VA
, where I(A) is an indicator

function over A and VA is the volume of this region. In addi-
tion, IW(·) denotes an inverse Wishart density and GAM(·)
denotes a gamma distribution. Using the above assumptions,
the calculation of the weights is tractable.

The integral in (34) corresponds to having updated pa-
rameters of a landmark with the measurements in cell Cj,i,
that is with multiple empty and non-empty subsets Vj,i

k . The
result of an update with multiple non-empty Vj,i

k s is a normal
inverse Wishart gamma distribution whose parameters have
been updated by the measurements in these subsets.

Empty Vj,i
k s correspond to missed detection events. Such

events only affect the parameters of the resulting gamma
distribution. Each missed detection creates two hypotheses
regarding the distribution of the expected number of detections
from a landmark. The two hypotheses describe two different
ways by which our measurement model accounts for an empty
set of detections. One of the hypotheses corresponds to events
such as occlusion in the FOV, in which case we do not need
to change our prior belief regarding the expected number of
detections from a landmark. The other hypothesis states that
the landmark in the FOV has generated zero measurements
thus we should expect fewer detections from this landmark,
and this information should be used to update our prior belief.

Accordingly, the result of an update by multiple empty and
non-empty sets of measurements is a posterior with unimodal
normal-inverse Wishart part, and multi modal gamma part.
The gamma has 2N∅ modes, where N∅ is the number of
empty sets in Cj,i for which f(µ,xk) = 1. The multimodal
gamma distribution should be reduced to a unimodal gamma
distribution, to avoid computational complexity issues. In this
paper we have used a simple merging technique which works
well for high pD and low true landmark Poisson rate. In
scenarios with low pD and/or high landmark Poisson rate a
more accurate gamma mixture reduction technique, such as
the merging technique based on Kullback-Leibler divergence
[33] presented in [34], can be used.

Using the above assumptions, a landmark updated by the
measurements in the cell Cj,i will have a normal gamma
inverse Wishart distribution expressed as,

N (µ;µj,iK , (c
j,i
K )−1Σ)GAM(ω;αj,iK , β

j,i
K )IW(Σ; Sj,iK , ν

j,i
K ),

whose parameters are given by

νj,iK = ν0 + |Cj,i| − 1

Sj,iK = S0 +
∑

z∈Cj,i

(z− z)(z− z)T

µj,iK = z

cj,iK = |Cj,i|
αj,iK = α0 + |Cj,i|

βj,iK = β0 +N1 +

N∅∑
n=0

(
N∅
n

)
(pD)n(1− pD)N∅−nn

= β0 +N1 + pDN∅ (43)

where z is the mean of the measurements in cell Cj,i, and βj,iK
is calculated by a weighted sum over all the hypotheses due to
missed detections under the assumption of having a constant
probability of detection for all landmarks in the FOV, i.e.,
pkD = pD for all k. In addition, N1 is the cardinality of a set
of time stamps k for which Vj,i

k 6= ∅. Accordingly the integral
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in (34) which corresponds to the weight of the jth partition
of the measurements is expressed as

W j
K ∝

∏
i

∏
k:Vj,i

k 6=∅
pkD

VA

βα0
0 Γ(αj,iK )

(βj,iK )α
j,i
K Γ(α0)

×

|S0|ν0/2Γ2(νj,iK /2)

π|Cj,i|−1(cj,iK )0.5Γ2(ν0/2)|Sj,iK |ν
j,i
K /2

. (44)

The results in (43) and (44) are derived using similar mathe-
matical derivations as [28] and [35].

In this section the probability mass function of the partition
function was derived. We showed that the probability of each
partitioning of the measurements is equal to W j

K . In addition,
it was shown that with certain assumptions regarding the
prior densities and the likelihood of the measurements, these
weights can be calculated up to a proportionality constant. In
the remaining of the section, we propose a Gibbs sampler to
sample from the partition function.

B. A Gibbs sampler

The goal is to sample from the partitions. Each partitioning
of the measurements corresponds to a different multi-Bernoulli
component in the MBM. To sample from the partitions we
need to devise a method that facilitates moving from one
partition to the next. In this section we present one such
method. Let P(t) be the partition at the t-th iteration of the
Gibbs sampler. Assume that P(t) = P(j), where P(j) is
a valid partition with cells Cj,i. The cells are indexed by
i ∈ {1, 2, . . . , nP(j)}, where nP(j) = |P(j)| is the number
of cells in partition P(j). Note that a partition is invariant to
the ordering of the cells, i.e., if we permute the cell indices
we have the same partition.

The (t + 1)-th partition is obtained as follows. First a
measurement z is randomly selected from the measurement
set. Assume without loss of generality that the selected mea-
surement belongs to the `-th cell, z ∈ Cj,`. New partitions
can be obtained by performing “actions” that involve the se-
lected measurement z. Specifically, we consider the following
actions:
• Move z from Cj,` to the m-th cell Cj,m, where m ∈
{1, 2, . . . , nP(j)}. We denote the resulting partition as
P(j′)
m .

• Move z from Cj,` to a new cell. We denote the resulting
partition as P(j′)

0 .
The probability of moving to a partition is

Pr
{
P(t+1) = P(j′)

m

∣∣∣P(t) = P(j), z ∈ Cj,`
}

=
W
P(j′)

m

K∑nP(j)

m′=0 W
P(j′)

m′
K
(45)

for m = 0, 1, . . . , nP(j) , where WP
(j′)
m is the weight of

the partition (44). Note that m = 0 means that we get the
same partition, i.e., this action corresponds to P(t+1) = P(t).
Further, for the special case |Cj,`| = 1, moving z to a new
cell results in an equivalent partition, i.e., if |Cj,`| = 1 and
m = ` then P(t+1) = P(t). Because of this, to avoid double

counting the probability of P(t+1) = P(t), if |Cj,`| = 1 we
set

Pr
{
P(t+1) = P(j′)

`

∣∣∣P(t) = P(j), z ∈ Cj,`
}

= 0. (46)

The algorithm can be initialized with any valid partition.
Two simple examples are starting with a partition with all the
measurements in individual cells, or starting with a partition
with all measurements in a single cell. In the simulation
section, we use the former alternative.

The sum in the denominator of (45) might pose a challenge
as it could include a large number of cells. There are two
relieving aspects for the calculation of this sum. First, we
expect many of the terms to be zero as they could correspond
to infeasible data associations. For example, if the time tag
of z is k and the landmark formed by the measurements in
Cj,m is out of the field of view at time k, then it can be
concluded that the corresponding WP

(j′)
m

K = 0. Such cases can
be removed from the possible partitions. Second, since each
move only changes two cells, we can reuse the parameters
calculated for the other cells when calculating the weight of
the newly formed partition, i.e.,

W
P(j′)

m

K ∝
∏
τ

LP
(j′)
m ,τ

K

= LP
(j′)
m ,`

K LP
(j′)
m ,m

K

∏
τ :τ 6=`,m

LP
(j′)
m ,τ

K

= LP
(j′)
m ,`

K LP
(j′)
m ,m

K

∏
τ :τ 6=`,m

LP
(j),τ

K (47)

where LP
(j′)
m ,τ

K denotes the likelihood of cell τ of partition
P(j′)
m . Note that when a measurement is moved out of a cell,

the cell might become empty and we define, LP
(j′),∅
m

K , 1.

C. Parallelization

The proposed sampling method can be parallelized. This
can be viewed as a result of the product in (35), limited FOV
of the sensor and the size of the landmarks. For example,
measurements that have been detected in two non-overlapping
field of views have zero probability of belonging to the same
landmark. This implies that we can process two such groups
of measurements in parallel without having to introduce any
approximations. Moreover, measurements that are far away
(relative to our current belief of the size of the landmarks)
will have very low probability of belonging to the same
landmark. While this probability could be non-zero in practice,
we can use this information to obtain further parallelization by
gating those measurements. This results in an approximated
but accelerated sampling procedure.

D. Comparison to BNP

One commonly used prior model in BNPs is the Dirichlet
process [21], which is typically applied as a building block
in the Dirichlet process mixture model (DPMM). This model
assumes that there is an infinite number of components, of
which a finite number have generated the finite dataset at hand.
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This type of modelling results in a posterior distribution that
assigns higher probability mass to the number of components
that best explains the observations. This avoids the need to
pre-specify the number of components before observing the
data [19] [20].

In this paper, the map has been assigned a Poisson process
prior. Similarly to the DPMM, our model allows us to infer
the number of components (landmarks) given the data. The
difference is that the Poisson prior assumes that there exists a
finite and unknown number of landmarks a priori.

The Poisson prior model of the map is motivated by its
favorable conjugate properties to the standard measurement
model of extended landmarks. In [26] it is shown that the
PMBM prior is conjugate to the PPP extended target mea-
surement model. In a sequential setting, at the first time step,
our Poisson prior is updated by this measurement model,
resulting in a PMBM posterior. Consequently, the posterior
will maintain its PMBM form in the subsequent time steps.
Similarly, in a batch setting the Poisson prior and the PPP
measurement model result in a PMBM posterior. Therefore,
while the Poisson model for the map ensures a closed form
posterior, it is not clear how a Dirichlet process prior would
shape the posterior given the PPP measurement model.

The Gibbs sampling method used in this paper is similar to
the methods discussed in [23] [36], where the associations of
measurements to components are updated sequentially one at
a time, conditioned on the data and the rest of the associations.
This results in an MCMC chain whose equilibrium distribution
is the posterior density of the component associations. This
conditional probability can be viewed as the probability of
a particular partitioning of the measurements, since one can
move from one partitioning of the measurements to another by
changing a component (landmark) assignment of one measure-
ment. From this perspective, the equilibrium distribution of the
MCMC chain is the posterior density of the measurements’
partitions. In the proposed method we have derived the prob-
ability distribution of partitions of the measurements formed
by changing the landmark assignment of one measurement.

VI. ESTIMATION OF THE MAP

In this section we describe how the result of the sampling
method is used for estimating the map of the environment.

We assume that the chain has run long enough for conver-
gence, as a result the final samples are samples of the posterior
density of the partitioning of the measurements. That is, the
number of sampling iterations should be chosen such that the
burn-in period of the sampler is avoided. Given a partition
of the measurements, the association of the measurements to
landmarks is known. Therefore, each sample of the posterior
corresponds to a map of the environment. The estimated map is
computed by averaging over a number of final samples of the
chain. The averaging is performed over the positions, extents
and the weights of the landmarks of each sample (map).

In each partition of the measurements, every cell that con-
tains more than one measurement is considered to have been
generated by one landmark. This landmark has the prior distri-
bution described in (42) and is updated by the measurements

assigned to it according to (43). Among the cells which contain
a single measurement, some are generated by landmarks.
To decide whether a single measurement is generated by a
landmark, a threshold is set on the probability of existence
of the cells with cardinality one. Cells whose probability
of existence are above the threshold are considered to have
been generated by a landmark. Consequently, the parameters
for these landmarks are updated by the single measurement
assigned to them. According to (43), the parameters of the
extent of such landmarks are not updated, since for a uniform
position prior a single measurement only contains information
about the position and not the extent of the landmark.

To perform the averaging over the samples, we need to solve
an association problem between the cells of the samples. That
is, we need to establish which cells across the samples belong
to the same landmark. This is done by specifying an area
around the position of each cell. The cells whose distance
is less than the specified area are assumed to belong to the
same landmark. To estimate the properties of a landmark, we
average over the properties of the cells that belong to that
landmark. We do not use spurious cells in this calculation.
Spurious cells are those that exist in a very small percentage
of the chosen samples. The resulting estimation method is
presented in Algorithm 1.

Gibbs Sampling
Choose an initial partitioning PI of the measurements,

See Section VI.
for n=1: #iterations do

Randomly choose a measurement z from a cell.
Evaluate the weight of possible partitions formed by
moving z to a different cell according to Eq. (44).

Choose a partition P according to Eq. (45).
end
Map Estimation
Choose a number of final samples of the chain, see

Section VI.
for j=1: #Samples do

sample j corresponds to partition P .
for i=1:#Cells in P do

if rP,i >threshold then
update the parameters of the corresponding
landmark according to Eq. (43).

end
end

end
Average over the landmarks of the samples, see Section

VI.
Algorithm 1: Pseudo-code of the mapping algorithm.

The initial partitioning of the measurements can be chosen
arbitrarily so long as the chosen partition is feasible. An
infeasible partition corresponds to a partition with at least one
cell containing measurements from spatially far apart areas
of the map. Because the measurements in the same cell are
hypothesized to belong to the same landmark, such a partition
is infeasible and has zero weight. A simple choice of an initial
partitioning of the measurements is a partition with single-
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member cells where each measurement belongs to its own
cell.

The map generated by each sample of the MCMC chain
can be viewed as the intensity function of the PPP that has
generated the measurements. This per sample map is later
used for performance evaluation in Section VII. The intensity
function is an unnormalized Gaussian mixture. The mixture
corresponding to the estimated map is given by

ζ(θ̂) =

NE∑
l=1

ω̂lN (µl; µ̂l, Σ̂l), (48)

where θ̂ is formed by choosing an arbitrary order of the
estimated landmarks, and NE is the estimated number of
landmarks. Additionally, ω̂l, µ̂l and Σ̂l are the mean of the
updated gamma, normal and inverse Wishart distribution of
landmark l, respectively.

VII. SIMULATIONS AND RESULTS

In this section the proposed sampling algorithm is evaluated
on a synthetic mapping scenario where a sensor travels over a
track and collects measurements. The scenario is depicted in
Figure 1. The proposed algorithm is compared to the VBEM
mapping method presented in [10].

The VBEM method approximates the posterior density of
the map by simpler densities and is very computationally
efficient; however, this algorithm does not take into account the
uncertainty in the number of landmarks. A challenging part of
the VBEM is the initialization of the landmarks. The number
of landmarks should be set when initializing the algorithm. For
mapping a large area one needs to generate a large number
of landmarks which cover the AOI reasonably. This is very
important as VBEM is sensitive to initialization. The VBEM is
guaranteed to find a local optimum which may be far from the
global optimum. The Gibbs sampling method samples from
the posterior and considers the uncertainties in the number
of landmarks at a higher computational price. This algorithm
is expected to converge to the true posterior given enough
number of MCMC samples.

We use the integrated squared error (ISE) [37] as perfor-
mance measure, which is defined as the squared L2 norm
of the difference of two functions. In our problem, the first
function is ζ(θ), the non-normalized Gaussian mixture formed
by the true map, and the second is ζ(θ̂). The ISE is given by

J(θ, θ̂) = ||ζ(θ)− ζ(θ̂)||22 =

∫
(ζ(θ)− ζ(θ̂))2dθ. (49)

Here, θ is formed by an arbitrary order of the true landmarks.
This measure of performance accounts for all properties of
the map, i.e., positions, extents and weights of landmarks.

X (m)
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Y
 (

m
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sensor trajectory
landmarks
measurements

Figure 1. The scenario on which the algorithm is evaluated. The vehicle
travels one lap over the track and collects 543 measurements in total over
190 time steps.

Furthermore, in [38] it is shown that (49) has a simple and
exact form for Gaussian mixtures, which is described as

J(θ, θ̂) = JTT − 2JTE + JEE (50)

JTT =

NT∑
l1=1

NT∑
l2=1

ωl1ωl2N (µl1 ;µl2 ,Σl1 + Σl2) (51)

JTE =

NT∑
l1=1

NE∑
l2=1

ωl1 ω̂l2N (µl1 ; µ̂l2 ,Σl1 + Σ̂l2) (52)

JEE =

NE∑
l1=1

NE∑
l2=1

ω̂l1 ω̂l2N (µ̂l1 ; µ̂l2 , Σ̂l1 + Σ̂l2), (53)

where NT is the true number of landmarks.
The following parameter values have been used in the

simulations. The prior values for different parameters of the
map are set to S0

j = 5I, ν0
j = 5 and α0 = 0.1, β0 = 0.2. The

covariance of the measurement noise is set to R = 0.012I and
λc = 1. The sensor’s field of view has a range of 60m and
an angle of ±30◦. The probability of detection is set to one
inside the field of view and zero outside.

The true map consists of 20 landmarks. These landmarks,
together with clutter, have generated 543 measurements over
190 time scans, therefore, there are 10931.111 ways to partition
this set into non-empty cells. The sampling algorithm is run
for 120000 iterations, each taking on average 0.2 seconds on
a desktop computer with Windows 7 professional, Intel(R)
core(TM) i5 CPU 650@ 3.20 GHZ, and 8 GB of RAM. We
have chosen a high number of iterations to ensure that we
avoid the burn-in period of the sampler. Our results indicate
that the algorithm converges earlier (see below).

We initialize the algorithm with one cell per measurement.
This corresponds to each detection being an individual land-
mark or clutter, depending on the probability of existence.
Since this setting corresponds in general to a very unlikely
configuration (under the posterior), we considered a burn-in
period to remove the contribution of the initial samples of the
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Figure 2. Comparison between the true and the estimated positions of the
landmarks for the Gibbs sampling method.

algorithm. We chose this initialization scheme to show that
our algorithm does converge even from a poor starting point.

The map is estimated by averaging over the final 40000
samples of the chain. In each sample of the map, the cells
with existence probability higher than 0.5 are considered
as landmarks. The estimated position of the landmarks is
compared to the true positions in Figure 2. It can be seen
that most of the estimated positions are very close to the
true ones. In Figure (3), an area from the lower left corner
of the map has been magnified to illustrate the true map, the
measurements and the estimated map of the area. Figure 4
depicts the posterior Poisson rate of the undetected landmarks
calculated according to (37), the sensor trajectory and the
detected landmarks.

The estimated expected number of clutter measurements
is calculated by averaging over the final 40000 samples of
the MCMC chain. In each sample, the single-member cells
with probability of existence lower than 0.5 are assumed to
be clutter. In addition, for each sample, the total number of
clutter cells divided by the number of time steps is equal to
the expected number of clutter measurements. Following this
averaging method, the estimated expected number of clutter
measurements is 0.7626.

Figure 6 depicts a comparison of the estimated number of
landmarks per iteration between the VBEM method described
in [10] and our method. The number of landmarks in the
VBEM is considered to be those which have weights larger
than 0.01 and in the Gibbs sampling the cells with probability
of existence larger than 0.5. It should be noted that the chosen
weight threshold for the VBEM is the same as the one used in
[10] to estimate the number of landmarks. We can see that the
Gibbs sampling method provides a more accurate estimate of
the number of landmarks. The parameters of the VBEM are set
to the same values as [10]. The VBEM is initialized with 300
landmarks uniformly distributed over the AOI (recall that the
Gibbs sampling method is initialized with 543 single-member
cells).

The ISE of the map corresponding to each sample of the
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Figure 3. A magnified area of the map estimated by the Gibbs sampling
method, depicting the measurements, the true and the estimated landmarks.
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Figure 4. The posterior Poisson rate of the undetected landmarks and the
estimated detected landmarks illustrated in one figure. The background is the
posterior Poisson rate of the undetected landmarks, where the brighter the
color the more frequently the area has been in the FOV and, consequently,
the smaller the expected number of undetected landmarks. Accordingly, the
darker the background, the less frequently the area has been observed by the
sensor (covered by the FOV over multiple scans) and the higher the Poisson
rate. On top of the background, we have depicted the sensor trajectory and
the detected landmarks, marked by ellipses corresponding to their extent.

MCMC chain is compared to the ISE resulting from each
iteration of the VBEM in Figure 5. It can be seen that
the Gibbs sampling method has a lower ISE compared to
the VBEM. We can see that the Gibbs sampling algorithm
provides a more accurate map both in terms of the estimated
number of landmarks and the ISE.

VIII. CONCLUSIONS

In this paper, we derive the exact theoretical batch multi-
object posterior density of the map using a conjugate prior
form described in [25]. We propose a solution that uses
an extended object model and is capable of handling the
uncertainties in the cardinality of the set of landmarks. We
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Figure 5. Comparison between the ISE of the VBEM and the ISE of the
proposed algorithm.
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Figure 6. The estimated number of landmarks per iteration for VBEM and
the proposed algorithm.

use Gibbs sampling to estimate the batch multi-object posterior
density of the map. Our method is analogous to well-known
sampling approaches in BNPs. The results show that the
proposed algorithm can estimate the number of landmarks as
well as their properties and outperforms the VBEM method.
In addition, we discuss possible parallelization of the proposed
algorithm, which makes it suitable for large scale problems.
A parallel implementation of the proposed method is a topic
for future investigations. Preliminary results indicate that it
is possible to devise a sequential mapping algorithm based
on the presented batch mapping algorithm. An interesting
future research line is to continue this work and compare
a complete and well-designed sequential mapping algorithm
with the batch algorithm.
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APPENDIX A
RFS BACKGROUND

If the RFS of interest is denoted by Θ = {θ1, θ2, ..., θn},
the RFS density is expressed as

f(Θ) = p(n)
∑
η

fn(θη(1), ..., θη(n)) (54)

where p(n) is a cardinality distribution, fn(θη(1), ..., θη(n)) is
a cardinality-conditioned joint distribution and η accounts for
all n! possible permutations ensuring that f(Θ) is permutation
invariant.

P.g.fls provide an alternative representation of a RFS density,
one that is often simpler to deal with. The p.g.fl of a RFS
density is a transform of the density defined through the set
integral as [27, p. 371]

G[h] =

∫
hΘf(Θ)δΘ (55)

where h(θ) is a test function, hΘ ,
∏
θ∈Θ h(θ) and a set

integral is∫
τ(Θ)δΘ , τ(∅) +

∞∑
n=1

1

n!

∫
τ({θ1, θ2, ..., θn})dθ1...dθn.

(56)

The RFS density of a union of two independent RFS Θ =
Θ1

⋃
Θ2 is described by

f(Θ) =
∑

Θ1⊆Θ

fΘ1
(Θ1)fΘ2

(Θ−Θ1) (57)

and the corresponding p.g.fl is [27, p. 372]

GΘ[h] = GΘ1 [h]GΘ2 [h]. (58)

Additionally, a RFS density can be derived from its p.g.fl by
[27, pp. 375-376, 384]

f(Θ) =
δ

δΘ
G[h]|h=0

=
δ|Θ|∏
θ∈Θ δθ

G[h]|h=0, (59)

where
δ

δθ
G[h] , lim

ε↓0

G[h+ εδθ]−G[h]

ε
,

the cardinality of the set Θ is denoted by |Θ| and δθ(θ′) is a
Dirac delta function centred at θ′ = θ.

Our model makes use of two random processes, namely,
the PPP and the MBM. The RFS density of these processes
together with their p.g.fls have been previously derived in [27]
and discussed in [39] [25].

The RFS density and the p.g.fl of a PPP RFS are described
by [27]

f(Θ) = exp(−λ)
∏
θ∈Θ

λf(θ)

G[h] = exp(λ〈f ;h〉 − λ) (60)

where 〈f ;h〉 =
∫
f(θ)h(θ)dθ and the cardinality of Θ is

distributed according to a Poisson distribution with rate λ.
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Further, the members of Θ are independent and identically
distributed (iid) according to f(θ).

A Bernoulli RFS has the following RFS density and p.g.fl,

f(Θ) =

 1− r, Θ = ∅
rf(θ), Θ = θ

0, otherwise
G[h] = 1− r + r〈f ;h〉 (61)

where r is the probability of existence and f(θ) is the
existence-conditioned distribution.

A multi-Bernoulli process is formed by a union of N
independent Bernoulli processes, Θ =

⋃N
i=1 Θi. The p.g.fl

of this process resulting from (58) and (61) is expressed as

G[h] =
∏
i

(1− ri + ri〈fi;h〉). (62)

The RFS density of this process can be described as [39]

f({θ1, θ2, ..., θn}) =
∑
α∈Pn

N

N∏
i=1

fi(Θα(i)), (63)

where

PnN = {α : {1, ..., N} → {0, ..., n}|
{1, ..., n} ⊂ α({1, ..., N}),

if α(i) > 0, i 6= l then α(i) 6= α(l)} (64)

and

Θα(i) =

{
∅ α(i) = 0

{θα(i)} α(i) > 0
. (65)

That is, PnN accounts for all different ways of assigning the
N component of the multi-Bernoulli to the n landmarks. In
addition, each assignment α is a function that maps each
Bernoulli component into either a landmark l ∈ {1, 2, ..., n}
or clutter, which is indexed by zero.

The RFS density of a MBM process is formed by a
normalized sum over multi-Bernoulli (MB) RFSs, that is,

f(Θ) =
∑
j

W jf j(Θ) (66)

where each weight W j is related to one data association
hypothesis,

∑
jW

j = 1, and each f j(Θ) has the form
presented in (63). In addition, the p.g.fl of the MBM process
in (66) is formed by a weighted sum of the p.g.fl of MB RFSs
described by (62),

G[h] =
∑
j

W j
∏
i

(1− rj,i + rj,i〈f j,i;h〉). (67)

A. P.g.fl form of multi-object posterior density

In this section, the p.g.fl of the multi-object posterior is
presented for both sequential and batch processing. The p.g.fl
of the sequential posterior density can be calculated using the
p.g.fl of the corresponding measurement model. Accordingly,

this p.g.fl at time k given the RFS of the measurements up to
and including time k, Z1:k, is calculated by [27]

Gk|k[h] =

δF [g,h]
δZk

|g=0

δF [ǵ,h́]
δZk

|ǵ=0,h́=0

(68)

F [g, h] ,
∫
hΘkGk[g|Θk]fk|k−1(Θk|Z1:k−1)δΘk (69)

Gk[g|Θk] ,
∫
gZkfk(Zk|Θk)δZk (70)

where fk|k−1(Θ|Z1:k−1) is the predicted density of the state.
Using this p.g.fl, the posterior density of the RFS of landmarks
can be obtained. The complete derivation of this p.g.fl under
certain assumptions is given in [26] and summarized in Section
III.

The batch posterior p.g.fl can be expressed as

GK|K [h] =

δF [g1,g2,...,gK ,h]
δZ1,Z2,...,ZK

|g1=0,g2=0,...,gK=0

δF [ǵ1,ǵ2,...,ǵK h́]
δZ1,Z2,...δZK

|ǵ1,ǵ2,...,ǵK ,h́=0

(71)

where

F [g1, g2, ..., gK , h] ,
∫
hΘGK [g|Θ]f0|0(Θ)δΘ (72)

and

GK [g|Θ] =

∫
gZ1

1 gZ2
2 ...gZK

K

K∏
k=1

p(Zk|Θ)δZ1...ZK

=

K∏
k=1

Gk[gk|Θ]. (73)

Additionally, p(Zk|Θ) is the likelihood function at time k and
f0|0(Θ) is the prior density. These equations are the same as
those presented in [40] in a multi-sensor set-up. Both (68) and
(71) can be used to derive the batch posterior density.

APPENDIX B
THE BATCH MULTI-OBJECT POSTERIOR DENSITY

In this appendix we present the detailed derivation of the
batch multi-object posterior for a static map.

A. The PMBM density

Since the map consists of two disjoint subsets of detected
and undetected landmarks, the RFS density of the map can be
written as [27]

f(Θ) =
∑

Θd⊂Θ

fd(Θ
d)fu(Θ\Θd). (74)

Additionally, following the results regarding the relation be-
tween probability density and p.g.fl in [27] we can write

fd(Θ
d) =

δ

δΘ
Gd[h]|h=0

=
δ

δΘ
(
∑
j

W j
KG

d,j [h])|h=0

=
∑
j

W j
K

δ

δΘ
Gd,j [h]|h=0 (75)
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where

Gd,j [h] =

IjK∏
i=1

(1− rj,iK + rj,iK 〈f
j,i
K ;h〉), (76)

and

δ

δΘ
Gd,j [h]|h=0 =

∑
αj∈P |Θd|

I
j
K

IjK∏
i=1

f j,iK (Θαj(i)). (77)

Similar to (64) and (65), the mapping P |Θ
d|

IjK
and the compo-

nents Θαj(i) are defined as

P
|Θd|
IjK

= {αj : {1, ..., IjK} → {0, ..., |Θ
d|}|

{1, ..., |Θd|} ⊂ α({1, ..., IjK}),
if αj(i) > 0, i 6= l then αj(i) 6= αj(l)} (78)

and

Θαj(i) =

{
∅ αj(i) = 0

{θαj(i)} αj(i) > 0
, (79)

where P |Θ
d|

IjK
accounts for all different ways of assigning each

Bernoulli of each multi-Bernoulli component to a landmark for
different number of landmarks. For each multi-Bernoulli, |Θd|
cannot exceed IjK . In addition, αj is a function that maps each
Bernoulli component of the j-th multi-Bernoulli into either a
landmark l ∈ {1, 2, ..., |Θd|} or clutter. Similar to (61), the
spatial density of each Bernoulli component is defined as

f j,iK (Θ) =

 1− rj,iK Θ = ∅
rj,iK f

j,i
K (θ) Θ = {θ}
0 otherwise

. (80)

The Poisson process accounting for the undetected land-
marks is given by

fu(Θ\Θd) = e−λ
u
K

∏
θ∈Θu

λuKf
u
K(θ) (81)

where λuK and fuK(θ) are described in (37) and (38), respec-
tively.

B. Components of the PMBM density

The probability of existence of each Bernoulli component
in (32) depends on the cardinality of Cj,i. By applying (15),
(22) and (25) sequentially we can see that if |Cj,i| > 1 then
rj,iK = 1. Similarly, the probability of existence for |Cj,i| = 1
in (32) is derived by by applying (15) and (25), sequentially.

The spatial density of each Bernoulli component in (31) is
derived using (16), (23) and (26).

The Poisson rate and the spatial density of undetected land-
marks described in (37) and (38) are derived by sequentially
applying (18) and (19), respectively.
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