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We aim at finding the comorbidity patterns of substance abuse, mood and
personality disorders using the diagnoses from the National Epidemio-
logic Survey on Alcohol and Related Conditions database. To this end,
we propose a novel Bayesian nonparametric latent feature model for cat-
egorical observations, based on the Indian buffet process, in which the
latent variables can take values between 0 and 1. The proposed model
has several interesting features for modeling psychiatric disorders. First,
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the latent features might be off, which allows distinguishing between the
subjects who suffer a condition and those who do not. Second, the active
latent features take positive values, which allows modeling the extent
to which the patient has that condition. We also develop a new Markov
chain Monte Carlo inference algorithm for our model that makes use of
a nested expectation propagation procedure.

1 Introduction

Clinical experience and several studies suggest that some psychiatric dis-
orders may be more closely related to one another as indicated by the
frequency of their cooccurrence, which may have etiological and treatment
implications. These studies suggest that understanding the underlying in-
terrelationships among psychiatric disorders can be useful for improving
the diagnostic classification system and guiding treatment approaches for
each disorder (Blanco et al., 2013). Moreover, the disorders are not thought
to be on/off diagnostics, but rather manifestations or indicators of under-
lying continuous variables that represent predispositions to certain types
of psychopathology. Motivated by this relevance, in this letter, we aim at
finding the latent structure behind a database of psychiatric disorders. In
particular, making use of the data from the National Epidemiologic Survey
on Alcohol and Related Conditions (NESARC), we focus on the analysis of
20 common psychiatric disorders, including substance use, mood, and per-
sonality disorders.1 Our goal is to find comorbidity patterns in the database,
allowing us to seek hidden causes behind the disorders and provide an in-
dividual risk characterization for each subject. We develop a tool that can be
applied for personalized medicine, since it can detect subjects with higher
risk of suffering from psychiatric disorders. Indeed, comorbidity scores
are relevant in clinical practice to determine how aggressively to treat a
condition.

For that purpose, we rely on latent feature modeling, which allows us
to seek hidden causes and compact in a few features the immense redun-
dant information in the observed data. In this context, factor analysis is
probably the most commonly used approach for latent feature modeling
(Loehlin, 1986). However, as detailed in section 1.1, it has several limita-
tions in the modeling of psychiatric data. In this work, we alternatively
propose a Bayesian nonparametric (BNP) latent variable model for cate-
gorical observations based on the Indian buffet process (IBP) (Griffiths &

1The NESARC database contains the responses of a representative sample of the U.S.
population to a survey with questions related to the background of participants, al-
cohol and other drug consumption, and mental disorders. The first wave of NESARC
sampled the adult U.S. population with over 43, 000 respondents who answered al-
most 3, 000 questions. Public use data are available for this wave of data collection. See
http://aspe.hhs.gov/hsp/06/catalog-ai-an-na/nesarc.htm.
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Ghahramani, 2011), but instead of on/off latent features, we extend the
IBP model to allow for real-valued latent variables. In our model, latent
variables can be interpreted as latent disorders; once a subject has a latent
variable or disorder active, its value indicates the severity with what the
subject suffers from it. We limit the latent variables to be between 0 and
1, which also helps to interpret the latent variables as a belief in the sub-
ject having a latent disorder. A continuous latent variable model allows
us to distinguish between two subjects with the same hidden causes. In
other words, different suffering levels (severity factors) of a disorder might
lead to different treatments. Then, in contrast to a model with on/off latent
variables, our model allows understanding the degree of the disorder and
opens avenues for personalized medicine approaches.

We propose a spike and slab prior for the severity factors to readily ac-
count for subjects who do not have the disorder (spike component) and
allows assigning a degree of severity for an active latent feature (slab com-
ponent). We introduce gaussian weighting matrices to link the latent fea-
tures and the observations through a multinomial probit likelihood, and
we add a bias term, which plays the role of a latent feature that is always
active. For a categorical observation space in a latent feature model with-
out bias term, the observations for a subject with no active latent features
are assumed independent and equally likely, which does not sound like an
appealing outcome in our application. We also force the bias term to model
the general population that does not have any latent disorder, which allows
directly interpreting the active latent variables as latent features describ-
ing disorders. Additionally, this definition for the bias term decreases the
runtime complexity of our inference algorithm.

We introduce a novel Markov chain Monte Carlo (MCMC) inference
algorithm to sample the latent variables after collapsing the weighting
matrices. Due to the nonconjugacy of the likelihood model, the marginal
likelihood is approximated using a nested expectation propagation (EP)
algorithm (Riihimäki, Jylänki, & Vehtari, 2013). To our knowledge, EP has
never been used as a subroutine of an MCMC algorithm despite the fact
that it has been proven to be more accurate than other methods, like the
Laplace approximation (Cseke & Heskes, 2011; Kuss & Rasmussen, 2005).
The proposed nested EP can be efficiently run within the MCMC algorithm
because its complexity scales linearly with the number of observations, in
contrast to its cubic complexity when applied to gaussian processes for
multiclass classification (Riihimäki et al., 2013).

The main contributions of this letter are twofold. First, we develop a new
latent variable model based on the IBP that presents the necessary features
to analyze psychiatric data and an efficient MCMC inference algorithm.
Second, we apply the proposed model to provide a thorough analysis of
the relation among psychiatric disorders, obtaining results that are in agree-
ment with previous work and, more important, new insights that would
not be possible to obtain without the proposed model.
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1.1 Related Work. Similar studies on comorbidity among psychiatric
disorders have been carried out by Blanco et al. (2013) and (Ruiz, Valera,
Blanco, & Perez-Cruz, 2014). Blanco et al. (2013) resort to factor analysis to
study the latent relationship among psychiatric disorders. However, factor
analysis has three main limitations when applied to a psychiatric database:
the number of factors must be chosen in advance, the observations are
assumed to be gaussian distributed, and it provides a nonsparse latent
representation. Having to specify the number of factors in advance is a
nuisance, especially when little or no prior knowledge about the expected
number of factors that best explain the data is available. Moreover, the
gaussian assumption cannot properly fit the observations provided by the
clinical practitioners because the outcomes are categorical in nature (they
indicate whether a subject has a disorder). Finally, since in factor analysis
each subject is represented by nonsparse factors, they are more difficult to
interpret because the observed disorders are assumed to be influenced by
all latent factors for all subjects.

More recently, Ruiz, Valera, Blanco, and Perez-Cruz (2014) applied an
IBP for categorical observations, which provides a sparse representation
of the latent factors but also allows the number of factors to grow with
the number of available observations, avoiding the need to prespecify its
value. However, in this model, the latent factors are assumed to be binary,
which implies that all the subjects with a latent feature active present with
the same severity from the latent disorder. As a consequence, it does not
allow personalized medicine approaches, as there is no individual-specific
measurement of the degree of severity or risk.

Our model extends the IBP for categorical observations introduced by
Ruiz, Valera, Blanco, and Perez-Cruz (2012) and Ruiz et al. (2014). In both
works, the authors consider binary-valued latent features and apply an
MCMC algorithm that resorts to the Laplace approximation to integrate out
the weighting matrices that link the latent features and the observations
(through a multinomial-logit likelihood). We show in section 4 that our
approach not only provides more interpretable results thanks to the severity
factors, but are also more accurate due to the EP approximation.

The combination of the IBP with continuous latent variables has been
proposed by Knowles and Ghahramani (2011) for a BNP independent com-
ponent analysis (ICA). In this model, the prior for the latent continuous
variable and IBP matrices are conjugated with a gaussian likelihood, which
significantly differs from our proposal.

In this letter, we combine the advantages of factor analysis and the IBP
to propose a model that (1) allows for a potentially unbounded number of
latent features, which can be interpreted as latent disorders; (2) represents
each subject with a sparse latent feature vector whose elements indicate
whether a latent disorder is active in a subject and, when active, their val-
ues indicate the degree of suffering; and (3) provides interpretable comor-
bidity patterns among the psychiatric disorders. Moreover, the proposed
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Figure 1: Graphical model.

EP approximation provides more accurate results than the previously used
Laplace approximation.

2 Model Description

Latent modeling allows us to seek hidden causes and compact in a few
features the immense redundant information in the observed data. The most
common nonparametric tool for latent feature modeling is the IBP. The IBP
is a prior distribution over binary matrices in which the number of columns
(features) K is potentially infinite and the number of nonzero features in
each row is distributed as mean-α Poisson (Griffiths & Ghahramani, 2011).
Given a finite number of data points N (rows), it ensures that the number of
nonzero columns K+ is finite with probability one. In our application, the
rows of the IBP matrix represent subjects, whereas the columns represent
latent features, and the matrix represents the features that are active for
each particular subject. Let Z be a random N × K binary matrix distributed
following an IBP; Z ∼ IBP(α). The nth row of Z, denoted by zn·, represents
the vector of latent features of the nth subject, and every entry of Z is
denoted by znk. Hence, each element znk ∈ {0, 1} indicates whether the kth
feature contributes to the nth data point.

Here, we consider the model in Figure 1, in which Z ∼ IBP(α) and X
is an N × D matrix that contains the D-dimensional row observation vec-
tors, denoted by xn· = [xn1, . . . , xnD], where xnd ∈ {X1, . . . ,XR}, being Xr the
possible outcomes. In our application at hand, xn· contains the psychiatric
disorders for subject n, and R = 2 because disorders can be either present
or not present. Note that in other applications, the number of outcomes R
may be different for each dimension d, but we drop the dependence on d
for notational simplicity.

We additionally propose an N × K severity matrix W, where each ele-
ment wnk ∈ [0, 1] represents how much the nth observation is influenced by
the kth latent feature. Thus, wnk indicates how much the kth latent factor
influences the psychiatric disorders that the nth subject has. Similar to the
model by Knowles and Ghahramani (2011), we propose a spike and slab
prior over each wnk,

p(wnk|γ1, γ2, znk) = (1 − znk)δ0(wnk) + znkBeta(wnk|γ1, γ2), (2.1)



Model for Psychiatric Comorbidity Analysis 359

where δi(·) is the Kronecker delta function (mass point) at i, and γ1 and γ2
are hyperparameters of the model. We choose the beta distribution because
it enforces the severity variables wnk to be between 0 and 1.

We introduce the K × R matrices Bd to model the probability distribu-
tion over X, such that Bd links the latent features with the dth column of
the observation matrix X, denoted by x·d, similar to the standard gaussian
observation model by Griffiths and Ghahramani (2011). The rth column of
matrix Bd is denoted by bd

·r. We also define the length-R row vectors bd
0,

which model the bias term in the distribution over x·d. This bias term is un-
necessary from a modeling point of view, but it simplifies the interpretability
of the resulting generative model. Without a bias term, a data point (subject
in our application) with no active latent features would present outputs
that are independent and uniformly distributed. In our data (and it may
be common for other applications), most of the elements in the observation
matrix X indicate the absence of the disorders; they represent the “normal
behavior,” as most of the subjects do not have any disorder. Hence, we
use the bias term to model these subjects; consequently, the resulting active
features can be directly interpreted as latent features that deviate from the
norm (i.e., latent disorders). We denote by bd

0r the rth element of vector bd
0.

We assume a gaussian prior for the weighting vectors bd
·r with zero mean

and covariance matrix �b = σ 2
BI and, similarly, bd

0r ∼ N (bd
0r|0, σ 2

B ).
The probability of each element xnd taking value in the set {X1, . . . ,XR}

follows a multinomial probit model (Riihimäki et al., 2013),

p(xnd =Xr|wn·, Bd, bd
0)

= Ep(und )

⎡⎢⎣ R∏
r′=1
r′ �=r

�(und + (bd
0r − bd

0r′ ) + wn·(b
d
·r − bd

r′ ))

⎤⎥⎦ , (2.2)

where wn· stands for the nth row of matrix W, the auxiliary variable und
is distributed as p(und) = N (und|0, 1), Ep(und )[·] denotes expectation with
respect to the distribution p(und), and � denotes the cumulative density
function of the standard normal distribution. We use the multinomial probit
likelihood because it is amenable to an EP inference algorithm (Girolami &
Zhong, 2007).

This model assumes that the observations xnd are independent given the
severity matrix W, the weighting matrices Bd, and the vectors bd

0. Therefore,
the likelihood can be factorized as

p(X|W, B1, . . . , BD, b1
0, . . . , bD

0 ) =
N∏

n=1

D∏
d=1

p(xnd|wn·, Bd, bd
0). (2.3)

In our specific application, each observation xnd ∈ {yes, no} indicates
whether subject n has the disorder d. Under our model, we assume that
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the information in the data set X can be summarized with a smaller set of
K latent disorders, such that znk indicates whether subject n has the latent
disorder k and wnk can be interpreted as a belief in the subject’s suffering.
Additionally, matrices Bd measure the influence of each latent disorder in
the observed disorders, and the bias terms bd

0 model the population without
the latent disorders.

3 Inference

The inference procedure involves obtaining the posterior distribution of
matrices Z, W and B1, . . . , BD, and vectors b1

0, . . . , bD
0 , which is intractable.

We rely on MCMC methods, which have been broadly applied in mod-
els involving the IBP (Griffiths and Ghahramani, 2011; Williamson, Wang,
Heller, & Blei, 2010), to approximate it. Specifically, we propose an in-
ference algorithm based on Metropolis-Hastings (MH) steps (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings, 1970), in which we
jointly sample znk and wnk having marginalized the matrices Bd and vectors
bd

0. Since the posterior of Bd and bd
0 is intractable, we derive a nested EP

algortihm (Riihimäki et al., 2013) to approximately integrate out Bd and bd
0

in order to obtain the marginal likelihood p(X|W). The proposed nested EP
algorithm avoids both numerical quadratures and independence assump-
tions among the columns of Bd. We could sample instead from the full joint
posterior, but the high dimensionality of our parameter space causes strong
dependence among hyperparameters and latent values, resulting in a slow
mixing of the Markov chains and hence requiring thousands of posterior
draws (Riihimäki et al., 2013).

Our algorithm proceeds iteratively as follows. For each observation n =
1, . . . , N:

• Step 1: Jointly sample znk and wnk for k = 1, . . . , K+, where K+ is the
number of active latent features.

• Step 2: Consider adding new latent features for the nth observation,
updating K+ if necessary.

For conciseness, we drop the dependence of the hyperparameters in the
notation throughout the rest of the letter.

In step 1, we rely on MH proposing to move from an initial pair (znk, wnk)

to (z∗
nk, w

∗
nk) (jumping from matrices Z and W to Z∗ and W∗). Our proposal

distribution is

q1(z
∗
nk, w

∗
nk|znk, wnk)

=

⎧⎪⎨⎪⎩
δ1(z

∗
nk)p(w∗

nk|z∗
nk = 1), if znk = 0,

1
2
δ0(z

∗
nk)δ0(w

∗
nk) + 1

2
δ1(z

∗
nk)p(w∗

nk|z∗
nk = 1), if znk �= 0,

(3.1)
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that is, if znk = 0 we propose to move to z∗
nk = 1 with w∗

nk sampled from equa-
tion 2.1. Otherwise, either a move to z∗

nk = 0 or to z∗
nk = 1 (with a value of w∗

nk
drawn from the prior) is proposed with equal probability. The acceptance
probability for the MH step is given by

min
(

1,
p(X|W∗)p([Z∗])p(w∗

nk|z∗
nk)

p(X|W)p([Z])p(wnk|znk)

q1(znk, wnk|z∗
nk, w

∗
nk)

q1(z
∗
nk, w

∗
nk|znk, wnk)

)
, (3.2)

where

p([Z∗])
p([Z])

=

⎧⎪⎨⎪⎩
1, if znk = z∗

nk,

m¬kn/(N − m¬kn), if z∗
nk = 1, znk = 0,

(N − m¬kn)/m¬kn, if z∗
nk = 0, znk = 1,

(3.3)

being m¬kn the number of data points (excluding n) that have an active kth
feature, namely, m¬kn =∑n′ �=n zn′k. The distribution p(wnk|znk) is given in
equation 2.1 and, as previously stated, the probabilities p(X|W) are obtained
using the nested EP algorithm detailed in the appendix, where it is also
shown that the nested EP presents linear complexity with the number of
observations.

For step 2, we need to define κn as the number of columns of Z that
are active only in the nth row: κn =∑∞

k=1 znk
∏

n′ �=n(1 − zn′k). Note that, after
performing step 1, the initial value of κn is 0 due to the form of equations 3.2
and 3.3. The new value κ∗

n is sampled with an MH step. We include as part of
the proposal the corresponding new values of the severity matrix, a 1 × κ∗

n
vector denoted by ω∗

n. Therefore, we propose to jump from an initial value
of κn and ωn to κ∗

n and ω∗
n, where the latter variables are drawn from the

proposal distribution,

q2(κ
∗
n ,ω∗

n) = q2(κ
∗
n )q2(ω

∗
n|κ∗

n ). (3.4)

We make q2(ω
∗
n|κ∗

n ) equal to the prior, q2(ω
∗
n|κ∗

n ) =∏κ∗
n

k′=1 p(ω∗
nk′ |z∗

nk′ = 1), and
q2(κ

∗
n ) is chosen following Knowles and Ghahramani (2011):

q2(κ
∗
n ) = (1 − π)Poisson

(
κ∗

n |αλ/N
)+ πδ1(κ

∗
n ), (3.5)

where we set λ = N/2 and π = 0.2. The move in step 2 is accepted with
probability

min

(
1,

p(X|W∗)
p(X|W)

(α/N)κ
∗
n

κ∗
n !

q2(κn)

q2(κ
∗
n )

)
. (3.6)



362 I. Valera et al.

Figure 2: Toy example 1. (a) Base images. (b) Four observation examples. The
numbers above each figure indicate which features are present in that image.

4 Experiments

4.1 Experiments on Synthetic Data. In order to evaluate the perfor-
mance of our model and inference algorithm, we generate two synthetic
data sets and perform comparisons between a latent feature model with
(1) on/off hidden variables and inference based on Gibbs sampling and
the Laplace approximation (denoted by “On/Off+Lap.”) (Ruiz et al., 2012);
(2) on/off hidden variables and inference based on Gibbs sampling and
the nested EP approximation described in section 4.2 (“On/Off+EP”); and
(3) continuous hidden variables in [0, 1] and inference based on MH steps
and the nested EP approximation—the algorithm in section 3 (“Sev.+EP”).
In the three cases, we remove the bias term because it is not needed for the
synthetic data sets considered.

We generate binary-valued observation matrices X, with N = 100 black-
and-white images with dimensionality D = 36, that are built differently for
each of the two data sets.

Toy example 1 replicates the synthetic experiment by Ruiz et al. (2012), in
which each observation xn· is a combination of four latent black-and-white
base images that can be present or absent with probability 0.5 independent
of each other: znk = 1 with probability 0.5. Each white pixel in the composite
image becomes black with probability 0.5, while black pixels remain black.
We plot in Figure 2 the four base images and four observation examples.

Toy example 2 is similar to example 1, but we introduce a latent auxiliary
matrix A to generate observations. As before, we assume four latent features
that become active with probability 0.5, but we also generate a N × 4 matrix
A, whose elements ank are beta(2, 1) distributed. In this setup, we divide
each image into four disjoint regions of nine pixels, each modeled by one of
the latent features. Each of the nine pixels in observation n corresponding
to feature k is set to black with probability 0.5 + 0.5ank if znk = 1, or with
probability 0.5 otherwise.

In order to compare the three methods, we average over five independent
realizations of the two synthetic data sets the following scores:

• Approximate marginal log-likelihood p(X|Z) or p(X|W) (Log-lik).
• Kullback-Leibler divergence (DKL) between the true and the inferred

probability of the observation matrix, that is, between the inferred
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Table 1: Results for Toy Example 1.

On/Off+Laplace On/Off+EP Sev.+EP

Log-lik −1,943 −2,001 −1,948
DKL 497.15 354.92 347.11

Table 2: Results for Toy Example 2.

On/Off+Laplace On/Off+EP Sev.+EP

Log-lik −2,122 −2,233 −2,151
DKL 524.16 372.10 353.15

probability of the observations and the underlying true generative
process described above. We compute the inferred probability using
the mean of the approximate posterior of Bd and the sample of the
latent feature matrix Z (or W, if available).

In Tables 1 and 2, we show the results for the two synthetic data sets.
Note that the obtained values of the average log likelihood are similar for the
three considered methods (no significant statistical differences are found) in
both examples. However, we can observe significant differences in terms of
the Kullback-Leibler divergence, for which the model with severity factors
combined with the EP inference provides the best results in both examples.
In example 1, since the generative model considers binary latent variables
(instead of continuous), both the “On/Off+EP” and the “Sev.+EP” methods
provide similar results.

We have shown that the model with severity factors (combined with
EP inference) better captures the true underlying probability of the obser-
vations given the latent variables. This improvement in the performance
becomes more relevant in real applications such as the analysis in next
section, where we are interested in studying the probability of subjects
suffering from psychiatric disorders.

4.2 Experiments on Real Data

4.2.1 Database Description. The NESARC is a survey designed and
conducted by the National Institute on Alcohol Abuse and Alcoholism
(NIAAA) that samples the adult U.S. population; it has over 43,000 sub-
jects. The NESARC includes almost 3000 questions not only on alcohol use
and abuse, but also on a wide range of physical and psychiatric disorders,
as well as significant background of its participants.
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Table 3: Empirical Probabilities of Possessing at Least One Latent Feature, Ex-
tracted Directly from the Inferred IBP Matrix Z.

Active Feature Feature 1 Feature 2 Feature 3

Empirical Probability 0.0594 0.0239 0.0201

Based on information collected in the first wave of the NESARC, a set
of preestablished and reliable diagnostic algorithms was applied to each
subject to determine the presence or absence of 20 psychiatric disorders
(Blanco et al., 2013). These disorders include substance use disorders (al-
cohol abuse and dependence, drug abuse and dependence, and nicotine
dependence), mood disorders (major depressive disorder [MDD], bipolar
disorder, and dysthymia), anxiety disorders (panic disorder, social anxiety
disorder [SAD], specific phobia, and generalized anxiety disorder [GAD]),
pathological gambling (PG), and seven personality disorders (avoidant,
dependent, obsessive-compulsive [OC], paranoid, schizoid, histrionic and
antisocial personality disorders [PDs]).

In this study, we apply the model in section 2 taking the diagnoses of
the 20 psychiatric disorders for all the subjects in the NESARC as input
data. This study provides an alternative to the factor analysis approach by
Blanco et al. (2013) and to the IBP with categorical observations by Ruiz
et al. (2014), who use the Laplace approximation to obtain the marginal
likelihood. We compare our approach to their methods to show that our
model not only provides results in agreement with previous studies, but
also more interpretable results that allow us to obtain new insights on the
comorbidity patterns among psychiatric disorders.

4.2.2 Experimental Setup. For the following experimental results, we set
α = 1, σ 2

B = 1, γ1 = 2, and γ2 = 1 and run our inference algorithm. In order
to speed up the inference procedure, we do not sample the rows of W
corresponding to subjects who suffer from at most 1 out of the 20 disorders
but instead fix these latent features to zero. The idea is that the bd

0 terms
must capture the general population, and we use the active components
of the matrix W to characterize the disorders. Besides speeding up the
algorithm, this modification ensures that the active latent features increase
the probability of suffering from the disorders and can be interpreted as
latent disorders, which helps interpreting the obtained results.

4.2.3 Results. Similar to previous studies (Blanco et al., 2013; Ruiz et al.,
2014), we find that we need three latent features to describe the data. In
Table 3, we show the empirical probability of possessing each of the inferred
latent features: the number of subjects in the database who possess each
latent feature divided by the total number of subjects. Additionally, we plot
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Figure 3: Probabilities of suffering from the 20 considered disorders for the
latent feature vectors wn· shown in the legend. These probabilities have been
obtained using the mean of the approximate posterior of the matrices Bd.

in Figure 3 the approximate posterior probability of suffering from each
of the considered disorders when only one of the latent features is active
(assuming severity factors equal to one) and when none of them is active.
As expected, for subjects with no active latent feature, the probability of
having any disorder is below the baseline level (defined as the empirical
probability of having each disorder in the full database).

We can interpret each of the obtained latent features from the analysis
of Figure 3. Feature 1 (pattern [100]) increases the probability of having
all disorders, except alcohol abuse, and thus seems to represent a general
psychopathology factor, although it may particularly increase the risk of
personality disorders (disorders 14–20). Feature 2 (pattern [010]) models
substance use disorders and antisocial personality disorder, which is con-
sistent with the externalizing factor identified in previous studies of the
structure of psychiatric disorders (Krueger, 1999; Kendler, Prescott, Myers,
& Neale, 2003; Vollebergh et al., 2001; Blanco et al., 2013). Feature 3 (pat-
tern [001]) models mood or anxiety disorders and thus seems to represent
the internalizing factor also identified in previous studies. Note that the
probability of bipolar disorder presents a significantly different behavior,
since major depression (MDD) and dysthymia are mutually exclusive with
bipolar disorder.

In addition to the hidden relation among the disorders, our model also
provides an individual-specific severity term that can be interpreted as our
belief that the subject is suffering a latent disorder. We find that more than
80% of the subjects with active features have a severity factor above 0.5, and
around 50% of them have a severity value greater that 0.75. The histograms
for wn1, wn2, and wn3 are shown in Figure 4.

Additionally, we plot in Figure 5 the posterior probability of suffering
from each of the disorders when only feature 1 is active, for any value of the
severity wn1. (Similar plots, for features 2 and 3, are provided in Figures 6
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Figure 4: Normalized histograms of wn1, wn2, and wn3 (assuming that zn1 = 1,
zn2 = 1 and zn3 = 1, respectively).

Figure 5: Probabilities of suffering from the 20 considered disorders when only
feature 1 is active for any value of the severity wn1 (shown in the bar on the right).
These probabilities have been obtained using the mean of the approximate
posterior of the matrices Bd. The solid line represents the empirical probabilities,
obtained for subjects who have only feature 1 active.

and 7, respectively.) When the severity reaches 0 (depicted in black), feature
1 turns inactive, and therefore the corresponding probabilities coincide
with the green line in Figure 3 (pattern [000]). As the severity approaches
1 (depicted in red), the corresponding probabilities coincide with the red
line in Figure 3 (pattern [100]). The solid line in Figure 5 represents the
empirical probability of suffering from each disorder, obtained for subjects
who have only feature 1 active. We can see that although the probability
of suffering from each disorder becomes higher when the inferred severity
value increases, each disorder is affected differently by the value of the
severity factor. For instance, the probability of suffering from OCPD goes
from 0.04 in the general population to 0.8 for the subjects with a severity
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Figure 6: Probabilities of suffering from the 20 considered disorders when only
feature 2 is active for any value of the severity wn2 (shown in the bar on the right).
These probabilities have been obtained using the mean of the approximate
posterior of the matrices Bd. The solid line represents the empirical probabilities,
obtained for subjects who have only feature 2 active.

Figure 7: Probabilities of suffering from the 20 considered disorders when only
feature 3 is active for any value of the severity wn3 (shown in the bar on the right).
These probabilities have been obtained using the mean of the approximate
posterior of the matrices Bd. The solid line represents the empirical probabilities,
obtained for subjects who have only feature 3 active.

factor for feature 1 near to one, while the probability for alcohol abuse
changes from only 0.04 to 0.05.

To further analyze the impact of severity, we depict in Figure 8 the
distribution of the number of disorders for subjects whose inferred severity
is between the numbers shown in the horizontal axis. As expected, as the
inferred severity increases, so does the number of disorders that a subject
suffers. Figure 8a shows that feature 1 (general psychopathology factor) is
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Figure 8: Distribution of the number of disorders for subjects who have only
active one latent feature (shown in legend), whose inferred severity is between
the numbers shown in the horizontal axis. The thick line corresponds to the
median, the edges of the box are the 25th and 75th percentiles, and the whiskers
represent the most extreme values.

the feature with the highest impact on the average number of disorders.
However, when we consider only a subset of the disorders (see Figures 8b
and 8c), features 2 and 3 become more relevant. These subsets have been
chosen to match the externalizing and internalizing factors, respectively.
Hence, we can interpret each latent feature as a latent disorder (that groups
several observed disorders) and its related severity factor as a belief in
the suffering from this disorder. As a consequence, subjects with higher
suffering of a latent disorder tend to suffer from several comorbid disorder
in the same group of disorders.

4.2.4 Comparisons with Previous Approaches. In order to examine the ef-
fect of the severity in our IBP-based model, we plot in Figure 9 the results
reported by Ruiz et al. (2014) for the probability of suffering from each
disorder, denoted as “on/off” in the figure. When we compare these prob-
abilities with our results in Figure 3 (which are replicated in Figure 9), we
can observe that the inferred probabilities for our continuous latent feature
model are more extreme than for the binary latent feature model. This is due
to the fact that our model includes the individual-specific severity terms
wn·, which allow weighting the contribution of each latent feature specif-
ically for each subject in the database, and therefore when we set wnk = 1
as in Figure 9, we obtain the most severe contribution of latent feature k.
The binary latent feature model by Ruiz et al. (2014) cannot capture this
variation across the subjects, and hence the probability curves tend to be
adjusted so as to explain all subjects having feature k active, regardless of
their severity level. In other words, including the continuous latent vari-
ables (or severity terms) allows a wider dynamical range for the probability
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Figure 9: Comparison of IBP-based approaches. Probabilities of suffering from
the 20 considered disorders for the latent feature vectors are shown in the
legend for both the binary latent feature model (On/Off) and our continuous
latent feature model (Cont.).

of suffering each disorder, being that dynamical range modulated by wnk. If
we had only on/off latent variables, we could not distinguish between sub-
jects who suffer only minor disorders (lower probability or fewer of them)
to those suffering major disorders (higher probability or many of them).
Considering continuous values for the latent variables does not change the
role of the three latent variables; the conclusions for the general population
remain unchanged. However, it allows providing an individual character-
ization for each subject (see, e.g., Figure 8) that the previous model with
on/off latent variables could not provide, increasing the applicability of the
proposed model for personalized medicine.

Now we compare our results to those reported by Blanco et al. (2013),
who apply factor analysis to study the comorbidity patterns among psychi-
atric disorders. In factor analysis, the observation matrix X can be expressed
as X = LF + ε, where L is an N × K matrix (K 	 N), F is a K × D matrix,
and ε is additive gaussian noise. Therefore, factor analysis assumes that
the observation matrix is gaussian, although the observations are actually
of a categorical nature (a subject may either suffer from a disorder or not
suffer). We replicate the experiments by Blanco et al. (2013) assuming K = 3
factors and plot the obtained factors in Figure 10. In this figure, we observe
that although the obtained factors allow for a similar interpretation than
under our IBP-based results in Figure 3, factor analysis does not provide a
probabilistic interpretation of the latent factors, since they are not bounded.

Additionally, we plot in Figure 11 a normalized histogram for each col-
umn (factor) of the obtained matrix L. Since factor analysis cannot provide a
sparse representation of the data set, the resulting matrix L is dense, which
implies that we cannot distinguish among subjects with or without active
latent factors. As a consequence, in the histograms, we observe a peak
around zero, and only around 23% of the subjects present absolute values
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Figure 10: Representation of the factors F obtained with the factor analysis
approach.

Figure 11: Normalized histograms of the factor values in L for the factor analysis
approach.

greater than 0.5. We additionally plot in Figure 12 the average number of
disorders that subjects with different values for the latent factors suffer
from. In contrast to Figure 8, in this plot we represent all the subjects, since
we cannot restrict our analysis to subjects who have only one active latent
factor. This explains the behavior in Figure 12 when the factor values drop
below −4. Because the latent factors are not bounded, they cannot be easily
interpreted as a belief in the suffering from latent disorders.

4.2.5 Summary and Interpretation of the Results. Our model provides re-
sults that are consistent with previous studies on the latent structure of
psychiatric disorders but also provide new insights. We find that the co-
morbidity patterns of common psychiatric disorders can be described by
a small number of latent features, even though the model has enough a
priori flexibility to account for a potentially unbounded number of fea-
tures. In addition, nosologically related disorders, such as social anxiety
disorder and avoidant personality disorder, tend to be modeled by similar



Model for Psychiatric Comorbidity Analysis 371

Figure 12: Distribution of the number of disorders for the factor analysis ap-
proach for subjects who have latent factor values between the numbers shown
on the horizontal axis. The thick line corresponds to the median, the edges of
the box are the 25th and 75th percentiles, and the whiskers represent the most
extreme values.

features. We also find that no disorder is perfectly aligned along a single
latent feature, which suggests that disorders can develop through multiple
etiological paths. For instance, the risk of nicotine dependence may be high
in individuals with a propensity to externalization or internalization, as
Blanco et al. (2013) suggested.

From the analysis of the figures, we can conclude that the probability of
appearance of a disorder changes significantly when the value of the sever-
ity associated with that group of disorders changes. We also find that most
of the subjects with active latent features suffer from three or more disor-
ders, and in general, most of the disorders that a subject suffers belong to the
group of disorders modeled by the same latent feature. Therefore, a subject
with feature 2 (feature 3) active has a higher probability of suffering simul-
taneously from several externalizing (internalizing) disorders, especially if
the corresponding severity value is high. In this way, we can understand
the importance of the severity factors in the model, because they allow ex-
plaining the comorbidity among the disorders and also understanding the
stress each subject suffers.

5 Conclusion

In this letter, we have proposed a new model that combines the IBP prior
with continuous-valued severity factors to characterize categorical observa-
tions using the multinomial probit likelihood, and we have derived a nested
EP approximation to integrate out the weighting factors, which allows us to
efficiently run an MCMC sampler. The proposed model has several relevant
properties that stand out when compared with previous approaches: (1) it
addresses the modeling of categorical observations without assuming that
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they are gaussian distributed; (2) it provides a sparse latent representation
since the latent variables can be active or inactive; (3) the active latent vari-
ables are continuous valued, allowing us to distinguish different subjects
that have the same active latent features; and (4) we do not need to prespec-
ify the number of latent variables in advance, as the inference procedure
can find it.

We have applied our model to the NESARC database to find the hid-
den features that characterize 20 common psychiatric disorders, finding
that three latent features capture the comorbidity patterns. Hence, we have
shown that the approach provides results over the NESARC database that
concur with previous work and provide new information, such as the
individual-specific severity terms for each latent feature. The severity terms
can help to more deeply analyze the comorbidity patterns among the disor-
ders and detect subjects with a higher risk of suffering from one or several
disorders. Although our analysis focuses only on psychiatric disorders, the
model is general in the sense that it can be used as a latent variable model
for other applications with categorical data.

Appendix: Nested EP

In this section, we adapt the nested EP algorithm introduced by (Riihimäki
et al., 2013) to approximate the marginal likelihood p(X|W). The proposed
model assumes that the observations are independent given W and the
weighting matrices and vectors. Then the posterior p(B1, . . . , BD|X, W) fac-
torizes as2

p(B1, . . . , BD|X, W) =
D∏

d=1

p(Bd)p(x·d|W, Bd)

p(x·d|W)
. (A.1)

The computation of the marginal likelihood, p(x·d|W) = ∫ p(Bd)p(x·d|W,

Bd)dBd, is intractable, because the prior and likelihood are not conjugate.
Therefore, we run D parallel nested EP algorithms to compute p(x·d|W),
and the marginal likelihood p(X|W) is the product of the individual terms
p(x·d|W) for d = 1, . . . , D. In the description of the nested EP algorithm,
we do not make explicit the dependence on d, unless necessary, to avoid
cluttering of notation.

Besides EP, we could also approximate this posterior using multidimen-
sional quadratures (Seeger & Jordan, 2004) or the Laplace approximation
(Girolami & Zhong, 2007). We choose the nested EP algorithm because EP
approaches are typically more accurate than the Laplace approximation and

2In what follows, the bias term is incorporated in W and Bd ; W stands for [1 W] and
Bd denotes [(bd

0 )
 (Bd )
]
.
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computationally less demanding than numerical quadratures (Riihimäki
et al., 2013). The nested EP consists of two loops, which we describe; they
are summarized in algorithms 1 and 2. We also show in this section that the
complexity of the nested EP is linear in the number of observations.

For convenience, we stack the columns of Bd into the vector βd—βd =
Bd(:) in Matlab notation. Note that given W, we need only to account
for the parameters corresponding to the K+ active features. To obtain the
marginal likelihood, we need to approximate the posterior p(βd|x·d, W) with
a tractable distribution. The likelihood p(x·d|W,βd) contains a product of
nonconjugate terms (sites) (Seeger, 2008), denoted by td

n(βd) = p(xnd|W,βd),
and hence the posterior can be expressed as

p(βd|x·d, W) = N (βd|0, σ 2
BI)
∏N

n=1 td
n(βd)

p(x·d|W)
. (A.2)

The EP approximation consists of replacing each site td
n(βd) with a

tractable term t̃d
n(βd), resulting in an approximate distribution that we

denote by qEP(βd). We choose t̃d
n(βd) to be a scaled gaussian with the

R(K+ + 1) × 1 vector λ̃n and the R(K+ + 1) × R(K+ + 1) matrix �̃n as nat-
ural parameters, and scaling constant Z̃n, t̃d

n(βd) = Z̃nN (βd|�̃−1
n λ̃n, �̃

−1
n ),

yielding

qEP(βd) =N (βd|�−1
EPλEP,�−1

EP )

= 1
ZEP

N (βd|0, σ 2
BI)

N∏
n=1

Z̃nN (βd|�̃−1
n λ̃n, �̃

−1
n ), (A.3)

where λEP and �EP are the natural parameters of the gaussian distribution
qEP(βd). We choose Z̃n following Seeger (2005) in order for ZEP to become a
good approximation of the marginal likelihood p(x·d|W).

EP chooses the parameters λ̃n and �̃n by matching the moments of
p(βd|x·d, W) and qEP(βd), which is equivalent to minimizing the Kullback-
Leibler divergence DKL(p(βd|x·d, W)||qEP(βd)). This minimization is solved
iteratively for n = 1, . . . , N (Minka, 2001; Seeger, 2008; Opper & Winther,
2005) (repeating until convergence) as follows:

1. Define the cavity distribution q¬n(βd) ∝ qEP(βd)/̃td
n(βd), in which we

have removed one approximate site. The natural parameters of the
cavity distribution are �¬n = �EP − �̃n and λ¬n = λEP − λ̃n.

2. Define the tilted distribution p̂n(βd) ∝ q¬n(βd)td
n(βd) (which includes

the true site) and minimize DKL( p̂n(βd)||qEP(βd)) with respect to
qEP(βd).

3. Update the approximate site as t̃d
n(βd) ∝ qEP(βd)/q¬n(βd).
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The standard EP algorithm solves step 3 by matching the moments be-
tween p̂n(βd) and qEP(βd), which is assumed to be tractable, but in this case,
matching these moments is not tractable and we resort to another EP loop,
the inner loop, and hence the name of the algorithm. The inner loop of the
nested EP, detailed below, approximates the tilted distribution

p̂n(βd) = 1

Ẑn

q¬n(βd)td
n(βd) (A.4)

by a gaussian distribution with natural parameters λ̂n and �̂n, which is
similar to the EP algorithm resulting from a linear binary classifier with a
multivariate gaussian prior and a probit likelihood function in the gaussian
process setting (Qi, Minka, Picard, & Ghahramani, 2004). Now step 3 follows
readily, since we can obtain the new natural parameters for the approximate
site t̃d

n(βd) as �̃
new
n = �̂n − �¬n and λ̃

new
n = λ̂n − λ¬n. A damping factor ηO ∈

(0, 1] can be used in this step for numerical stability (Seeger, 2005).
The site parameters t̃d

n(βd) can be updated in parallel for all n, recom-
puting the parameters of the posterior approximation qEP(βd) only once per
iteration of the outer loop (Cseke & Heskes, 2011; Seeger, 2008). The approx-
imate posterior parameters are �EP = 1

σ 2
B

I +∑N
n=1 �̃n and λEP =∑N

n=1 λ̃n.
After convergence, the marginal likelihood p(x·d|W) can be approximated
following Seeger (2005) as

log p(x·d|W) ≈ log ZEP = −1
2

log |�EP| − KR
2

log σ 2
B + 1

2
λ


EP�−1
EPλEP

+
N∑

n=1

log Z̃n, (A.5)

where we choose

log Z̃n = log Ẑn + 1
2
λ


¬n�
−1
¬nλ¬n − 1

2
(λ¬n + λ̃n)
(�¬n +�̃n)−1(λ¬n + λ̃n)

+ 1
2

log |�¬n + �̃n| − 1
2

log |�¬n|. (A.6)

We can summarize the full outer loop as given in algorithm 1.

A.1 Inner Loop. The inner loop is an EP method that approximates by
a gaussian the tilted distribution p̂n(βd), which can be expressed as

p̂n(βd) = 1

Ẑn

q¬n(βd)td
n(βd)
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= 1

Ẑn

N (βd|�−1
¬nλ¬n,�

−1
¬n)

∫
N (und|0, 1)

×

⎛⎜⎝ R∏
r′=1
r′ �=r

�(und + wn·(b
d
·r − bd

r′ ))

⎞⎟⎠ dund, (A.7)

with xnd = Xr.
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Removing the marginalization with respect to the auxiliary variable
und and defining βd

I as the vector compound of βd and und, namely,
βd

I = [(βd)
, und]
, we have the augmented tilted distribution,

p̂n(βd
I ) = 1

Ẑn

N (βd
I |�−1

In
λIn

,�−1
In

)

R∏
r′=1
r′ �=r

�((hd
nr′ )


βd
I ), (A.8)

where we have defined �In as a block-diagonal matrix formed from �¬n
and 1, λIn

= [λ

¬n, 0]
, and hd

nr′ = [(er − er′ )
 ⊗ wn·, 1]
. Here, ⊗ denotes
the Kronecker product, and er is the rth unit (column) vector of the R-
dimensional standard basis. Note that we use the subscript I to denote the
augmented variables that account for both βd and und. The normalization
term Ẑn is the same for p̂n(βd) and for the augmented distribution p̂n(βd

I ),
and it is defined as

Ẑn =
∫

q¬n(βd)N (und|0, 1)
∏
r′ �=r

�((hd
nr′ )


βd
I )dβd

I . (A.9)

Due to the multinomial probit model, equation A.8 contains a product
of intractable functions of the scalar variables sr′ = (hd

nr′ )

βd

I , allowing us
to apply a new inner EP loop, which is simpler than the outer loop since
it involves only scalar operations. Hence, the augmented distribution in
equation A.8 can be approximated by replacing each intractable term �(sr′ )

with a scaled univariate gaussian site function with natural parameters α̃nr′

and β̃nr′ , resulting in the approximate distribution

qIn
(βd

I )= 1
CIn

N (βd
I |�−1

In
λIn

,�−1
In

)

R∏
r′=1
r �=r

C̃nr′N (sr′ |α̃−1
nr′ β̃nr′ , α̃

−1
nr′ )

=N (βd
I |�̃

−1
In

λ̃In
, �̃

−1
In

), (A.10)

where the normalization constant CIn
approximates Ẑn.

We start from qnr′ (sr′ ) = N (sr′ |mnr′ , vnr′ ), being mnr′ = (hd
nr′ )


�̃
−1
In

λ̃In
and

vnr′ = (hd
nr′ )


�̃
−1
In

hd
nr′ . Then the cavity distribution qn¬r′ (sr′ ) can be written

as

qn¬r′ (sr′ ) = N (sr′ |mn¬r′ , vn¬r′ ), (A.11)

which has mean mn¬r′ = vn¬r′ (mnr′/vnr′ − β̃nr′ ) and variance vn¬r′ = (1/vnr′ +
α̃nr′ )−1. The tilted distribution (including one true site),
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f̂nr′ (sr′ ) = 1

Ĉnr′
qn¬r′ (sr′ )�(sr′ ), (A.12)

has mean m̂nr′ = mn¬r′ + ρnr′vn¬r′ , variance v̂nr′ = vn¬r′ − v2
n¬r′ (ρ

2
nr′ +

ρnr′
mn¬r′

1+vn¬r′
) and normalization constant Ĉnr′ = �(

mn¬r′√
1+vn¬r′

) (Qi et al., 2004),

being

ρnr′ =
N
(

mn¬r′√
1+vn¬r′

|0, 1
)

�

(
mn¬r′√
1+vn¬r′

)√
1 + vn¬r′

. (A.13)

Finally, the site updates are computed as α̃nr′ = 1/̂vnr′ − 1/vn¬r′ and β̃nr′ =
m̂nr′ /̂vnr′ − mn¬r′/vn¬r′ . Again, a damping factor ηI ∈ (0, 1] can be used in
this step. In this case, the site updates can be obtained in parallel for the
different values of r′, afterward recomputing the natural parameters of
qIn

(βd
I ) as �̃In

= �In
+∑r′ �=r α̃nr′ hd

nr′ (hd
nr′ )


 and λ̃In
= λIn

+∑r′ �=r β̃nr′ hd
nr′ .

The constants CIn
(which approximates Ẑn in equation A.8) and C̃nr′ in

equation A.10 can be computed after meeting the stopping criterion as

logCIn
=

R∑
r′=1r′ �=r

(
log C̃nr′ + 1

2
log(α̃nr′ )

)

+ 1
2

log(|�In
| − |�̃In

|) + 1
2

(̃
λ



In
�̃

−1
In

λ̃In
− λ


In
�−1

In
λIn

)
, (A.14)

and

log C̃nr′ = log Ĉnr′ + 1
2

log(vn¬r′ + 1/α̃nr′ )

+ 1
2

⎛⎜⎝m2
n¬r′

vn¬r′
−
(

mn¬r′
vn¬r′

+ β̃nr′

)2

1/vn¬r′ + α̃nr′

⎞⎟⎠ . (A.15)

Matrices �̂n and λ̂n of the outer loop can be obtained from �̃In
and λ̃In

after
removing the effects of the auxiliary variable und.

The complete algorithm is summarized in algorithm 2.

A.2 Computational Complexity. Although the nested EP is similar to
the algorithm proposed by Riihimäki et al. (2013), the computational com-
plexity is substantially different. The running time of the nested EP for
our model is linear in the number of instances (N), while for the Gaussian
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processes for multiclass classification, the computational complexity is cu-
bic. The nested EP for our algorithm needs to integrate out βd, which is
an R(K+ + 1)-dimensional vector. Note that the outer loop of the proposed
nested EP requires one loop in n and, since all the sites td

n(βd) are functions of
the same R(K+ + 1)-dimensional random vector βd, no matrix inversion is
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needed when we work with the natural parameters of the normal distribu-
tions. Each iteration of the inner loop, however, requires the inversion of a
matrix of size R(K+ + 1) + 1 (in practice, computed using the Cholesky de-
composition), which has a complexity of O((R(K+ + 1) + 1)3). The overall
complexity of the posterior approximation scales with DN(R(K+ + 1) + 1)3,
because we iterate through the number of samples N and the dimensional-
ity of the observation vector D. Evaluating the likelihood after convergence
of the outer loop requires operations of matrices of size R(K+ + 1) within a
loop in n, which leads to a complexity scaling with N(R(K+ + 1))3. Thus, the
overall complexity of the full nested EP algorithm to evaluate the marginal
likelihood p(X|W) is O(DN(R(K+ + 1) + 1)3). The EP procedure can be par-
allelized in the dimension of the observed instances (D) and in the number
of instances N, providing significant savings in runtime complexity.

Furthermore, the site parameters of the inner loop can be stored after each
inner EP run and used as starting parameters the next time the inner loop
is called (Riihimäki et al., 2013). In addition, successive calls to the nested
EP algorithm differ in just one element of wnk, which allows reducing the
number of outer loop iterations by storing the site parameters λ̃n and �̃n
after each nested EP run and continuing from the previous values in the next
run. In the effort to add new features, the values of the old site parameters
can still be used to build the new parameters (extended to account for the
new features) λ̃n and �̃n.
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