APPENDIX A
CULINARY METAPHOR

Following a similar procedure as in [1], we can derive the expression for \(\lim_{M \to \infty} p(\{S\}|Q, \alpha, \beta_0, \beta, \gamma) \) given in the Section 2.2 of the main text from a culinary metaphor analogous to the IBP. In this process, \(T \) customers enter sequentially a restaurant with an infinitely long buffet of dishes. The first customer starts at the left of the buffet and takes a serving from each dish, taking (possibly different) quantities for each one and stopping after a Poisson \(\{Q\} \) number of dishes. The number of units \(q \) for each one and stopping after a Poisson \(\{Q\} \) number of dishes. The number of units \(q \in \{1, \ldots, Q - 1\} \) she takes is independently sampled for each dish from a uniform distribution.

The \(t \)-th customer enters the restaurant and starts at the left of the buffet. At dish \(m \), she looks at the customer in front of her to see how many units she has taken from that dish and proceeds as follows:

- If the \((t - 1) \)-th customer did not take the \(m \)-th dish, she serves herself that dish with probability

 \[
 \frac{\beta_0 + \sum_{j=0}^{Q-1} n_{qi}^{m, j}}{\beta_0 + \sum_{j=0}^{Q-1} n_{qi}^{m, j}} \quad (i = 1, \ldots, Q - 1),
 \]

 or she does not take that dish with probability

 \[
 \frac{\beta_0 + \sum_{j=0}^{Q-1} n_{qi}^{m, j}}{\beta_0 + \sum_{j=0}^{Q-1} n_{qi}^{m, j}} \quad (i = 1, \ldots, Q - 1).
 \]

- If the \((t - 1) \)-th customer took \(q \) units from the \(m \)-th dish, the \(t \)-th customer either serves herself \(i \) units with probability

 \[
 \frac{\beta_0 (Q - 1) + \sum_{j=0}^{Q-1} n_{qi}^{m, j}}{\beta_0 (Q - 1) + \sum_{j=0}^{Q-1} n_{qi}^{m, j}} \quad (i = 1, \ldots, Q - 1),
 \]

 or she does not take that dish with probability

 \[
 \frac{\beta_0 (Q - 1) + \sum_{j=0}^{Q-1} n_{qi}^{m, j}}{\beta_0 (Q - 1) + \sum_{j=0}^{Q-1} n_{qi}^{m, j}} \quad (i = 1, \ldots, Q - 1),
 \]

 \[
 \frac{\beta_0 + \sum_{j=0}^{Q-1} n_{qi}^{m, j}}{\beta_0 + \sum_{j=0}^{Q-1} n_{qi}^{m, j}} \quad (i = 1, \ldots, Q - 1).
 \]

The \(t \)-th customer then moves on to the next dish and repeats the above procedure. After having passed all dishes people have previously served themselves from, she takes independent quantities \(q \sim \) Uniform \(\left(\frac{1}{Q - 1}, \ldots, \frac{1}{Q - 1} \right) \) from a Poisson \(\{Q\} \) number of new dishes.

If we fill in the entries of the \(T \times M \) matrix \(S \) with the number of units that every customer took from every dish, and we denote with \(M_1^{(t)} \) the number of new dishes tried by the \(t \)-th customer, the probability of any particular matrix \(S \) being produced by this process is given in Eq. 1.

It is straightforward to check that there are

\[
\frac{(Q - 1)!}{(Q - N_{Q})!} \prod_{t=1}^{T} M_1^{(t)}! / \prod_{h=1}^{Q - 1} M_1^{(t)}! \]

matrices in the same equivalence class as \(S \), and therefore we can recover \(\lim_{M \to \infty} p(\{S\}|Q, \alpha, \beta_0, \beta, \gamma) \) by summing over all possible matrices lying in the set \(\{S\} \) generated by this process.

APPENDIX B
ASSIGNMENT PROBABILITIES FOR THE GIBBS SAMPLER

We now derive the probability \(p(s_{tm} = k|S_{-tm}) \), needed in Section 4.1 of the main text. This expression can be expressed, up to a proportionality constant, as shown in Eq. 2. Let \(n_{qi}^{m, tm} \) be the number of transitions from state \(q \) to state \(i \) in chain \(m \), excluding the transitions from state \(s_{(t-1)m} \) to \(s_{tm} \) and from state \(s_{tm} \) to \(s_{(t+1)m} \). Similarly, let \(n_{q}^{m, tm} \) be the total number of transitions from state \(q \) in chain \(m \) without taking into account state \(s_{tm} \), namely, \(n_{q}^{m, tm} = \sum_{i=0}^{Q-1} n_{qi}^{m, tm} \). The expression in (2) takes different forms depending on the values of \(j = s_{(t-1)m} \) and \(\ell = s_{(t+1)m} \), yielding Eq. 3 for \(j = 0 \) and Eq. 4 for \(j \neq 0 \).
APPENDIX C
UPDATE EQUATIONS FOR THE VARIATIONAL ALGORITHM

The variational inference algorithm involves optimizing the variational parameters of $q(\Psi)$ to minimize the Kullback-Leibler divergence of q in the variational parameters of $p_M(\Psi | \mathcal{X}, \mathcal{H})$ from $q(\Psi)$, i.e., $D_{KL}(q || p_M)$. This optimization can be performed by iteratively applying the following fixed-point set of equations:

$$P^{m}_{jk} = \begin{cases}
\exp \left\{ \psi(t^m_{jk}) - \psi \left(\sum_{i=0}^{Q-1} t^m_{ji} \right) \right\}, & \text{if } j \neq 0 \\
\exp \left\{ \psi(\nu^m_1) - \psi(\nu^m_1 + \nu^m_2) \right\}, & \text{if } j = 0, k = 0 \\
\exp \left\{ \psi(\nu^m_2) - \psi(\nu^m_1 + \nu^m_2) + \psi(\epsilon^m_k) \right\} - \psi \left(\sum_{i=1}^{Q-1} \epsilon^m_i \right), & \text{if } j = 0, k \neq 0
\end{cases}$$

(5)

$$b^{m}_{kt} = \exp \left\{ -\frac{1}{2\sigma^2} (L_k)_m (L_k)^\top \right\} + \frac{1}{\sigma^2} (L_k)_m \left(x_t - \sum_{\ell \neq m} \sum_{i=1}^{Q-1} (L_i)_\ell q(s_{t\ell} = i) \right)^\top$$

(6)

$$\tau^m_{jk} = \delta_{k0} \lambda_0 + (1 - \delta_{k0}) \beta + \sum_{t=1}^{T} q(s_{(t-1)m} = j, s_{tm} = k)$$

(7)

$$\nu^m_1 = 1 + \sum_{t=1}^{T} q(s_{(t-1)m} = 0, s_{tm} = 0)$$

(8)

$$\nu^m_2 = \frac{\alpha}{M} + \sum_{t=1}^{T} q(s_{(t-1)m} = 0, s_{tm} > 0)$$

(9)

$$\epsilon^m_k = \gamma + \sum_{t=1}^{T} q(s_{(t-1)m} = 0, s_{tm} = k)$$

(10)

$$\Omega_k = \left(\frac{1}{\sigma^2_0} + \frac{M}{\sigma^2_\phi} \right)^{-1} I_D$$

(11)

$$\omega_k = \left(\frac{1}{\sigma^2_\phi} I_M L_k + \frac{1}{\sigma^2_0} \mu_0 \right) \Omega_k$$

(12)

$$\Lambda_k = \left(\frac{1}{\sigma^2_\phi} I_M + \frac{1}{\sigma^2_x} C_k \right)^{-1}$$

(13)

$$L_k = A_k \left(\frac{1}{\sigma^2_\phi} 1_M \omega_k + \frac{1}{\sigma^2_x} Q_k^\top \left(X - \sum_{j \neq k} Q_j L_j \right) \right)$$

(14)

where $(L_k)_m$ denotes the m-th row of matrix L_k, $\psi(\cdot)$ stands for the digamma function [2, p. 258–259], $\delta_{i'j'}$ denotes the Kronecker delta function (which takes value one if $i = i'$ and zero otherwise), and the elements of the $T \times M$ matrices Q_k and $M \times M$ matrices C_k are, respectively, given by

$$(Q_k)_{tm} = q(s_{tm} = k)$$

(15)

and

$$(C_k)_{mm'} = \begin{cases}
\sum_{t=1}^{T} q(s_{tm} = k)q(s_{tm'} = k), & \text{if } m \neq m' \\
\sum_{t=1}^{T} q(s_{tm} = k), & \text{if } m = m'.
\end{cases}$$

(16)

The probabilities $q(s_{tm})$ and $q(s_{tm}, s_{(t-1)m})$ can be obtained through a standard forward-backward algorithm for HMMs within each chain, in which the variational parameters P^{m}_{jk} and b^{m}_{kt} play respectively the role of the transition probabilities and the observation probability associated with state variable s_{tm} taking value k in the Markov chain m [3].

REFERENCES

\[p(S|Q, \alpha, \beta_0, \gamma) = \frac{\alpha^{M_+}}{M_{11}(t)!} \prod_{t=1}^{T} e^{-\alpha H_T} \times \prod_{m=1}^{M_+} \left[\frac{\Gamma(n_{0i}^{\text{tm}} + 1) \Gamma \left(\sum_{i=1}^{Q-1} n_{0i}^{\text{tm}} \right) \Gamma \left(\left(Q-1 \right) \gamma \right) \prod_{i=1}^{Q-1} \Gamma(n_{0i}^{\text{tn}} + \gamma) \Gamma \left(\sum_{i=1}^{Q-1} \left(n_{0i}^{\text{tm}} + \gamma \right) \right) \Gamma(\gamma) \prod_{q=1}^{Q-1} \left(\Gamma(\beta_0 + (Q-1)\beta) \prod_{i=1}^{Q-1} (\Gamma(\beta_0^{\text{tm}} + \beta_0) \prod_{i=1}^{Q-1} (\Gamma(n_{0i}^{\text{tn}} + \beta)) \right) \right] \]

(1)

\[p(s_{tm} = k|S_{-tm}) \propto \begin{cases} \int_{a_k^m} p(s_{tm} = k|a_k^m)p(a_k^m|\{s_{\tau m}|s_{(\tau-1)m} = j, \tau \neq t, t + 1\}) da_k^m \times \\
\times \int_{a_k^m} p(s_{(t+1)m} = \ell|a_k^m)p(a_k^m|\{s_{\tau m}|s_{(\tau-1)m} = k, \tau \neq t, t + 1\}) da_k^m, & \text{if } k \neq j \\
\int_{a_k^m} p(s_{(t+1)m} = \ell, s_{tm} = k|a_k^m)p(a_k^m|\{s_{\tau m}|s_{(\tau-1)m} = k, \tau \neq t, t + 1\}) da_k^m, & \text{if } k = j. \end{cases} \]

(2)

a) If \(j = 0 \):

\[p(s_{tm} = k|S_{-tm}) \propto \begin{cases} \frac{n_{00}^{\text{tm}} + 1}{(n_{0*}^{\text{tm}} + 1)(n_{0*}^{\text{tm}} + 2)} \left(\delta_{t0}(n_{00}^{\text{tm}} + 2) + (1 - \delta_{t0}) \frac{(\gamma + n_{0t}^{\text{tm}}) \sum_{i=1}^{Q-1} n_{0i}^{\text{tm}}}{\sum_{i=1}^{Q-1} (\gamma + n_{0i}^{\text{tm}})} \right), & \text{if } k = 0 \\
(\delta_{t0}\beta_0 + (1 - \delta_{t0})\beta + n_{k\ell}^{\text{tm}})(\gamma + n_{0\ell}^{\text{tm}}) \left(\sum_{i=1}^{Q-1} n_{0i}^{\text{tm}} \right), & \text{if } k = 1, \ldots, Q-1. \end{cases} \]

(3)

b) If \(j \neq 0 \):

\[p(s_{tm} = k|S_{-tm}) \propto \begin{cases} \frac{(\beta_0 + n_{j0}^{\text{tm}})}{(n_{0*}^{\text{tm}} + 1)(\beta_0 + (Q-1)\beta + n_{j*}^{\text{tm}})} \left(\delta_{t0}(n_{00}^{\text{tm}} + 1) + (1 - \delta_{t0}) \frac{(\gamma + n_{0t}^{\text{tm}}) \sum_{i=1}^{Q-1} n_{0i}^{\text{tm}}}{\sum_{i=1}^{Q-1} (\gamma + n_{0i}^{\text{tm}})} \right), & \text{if } k = 0 \\
(\delta_{t0}\beta_0 + (1 - \delta_{t0})\beta + n_{k\ell}^{\text{tm}} + \delta_{k\ell}\delta_{jk})(\beta + n_{j\ell}^{\text{tm}}) \left(\sum_{i=1}^{Q-1} \gamma + n_{0i}^{\text{tm}} \right), & \text{if } k = 1, \ldots, Q-1. \end{cases} \]

(4)