
Infinite Factorial Unbounded-State
Hidden Markov Model

Isabel Valera, Francisco J.R. Ruiz, and Fernando Perez-Cruz, Senior Member, IEEE

Abstract—There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of

several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial

hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the

number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial

unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markovmodels (HMMs) and states in each

HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns

represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the

existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded

number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded

number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem.

Index Terms—Time series, Bayesian nonparametrics, hidden Markov models, Gibbs sampling, slice sampling, variational inference,

reversible jump Markov chain Monte Carlo

Ç

1 INTRODUCTION

THERE are several real-world problems in which an
observed temporal sequence can be explained by sev-

eral unobservable independent causes, and we are inter-
ested in describing the latent model that leads to these
observations. For example, we might want to distinguish
the heartbeat of twins [1], separate the overlapping voices
on a single recording [2], or separate the contribution of
each device to the total power consumed at a household [3].
In some of these problems, the number of independent
causes and the number of states are known or limited to a
small range (e.g., babies in a womb), but in others that might
not be the case. For instance, the number of active devices in
a house might differ by orders of magnitude, and the states
used by each device can also be different. Accurate estima-
tion of the specific device-level power consumption avoids
instrumenting every individual device with monitoring
equipment, and the obtained information can be used to sig-
nificantly improve the power efficiency of consumers [4],
[5]. Furthermore, it allows providing recommendations

about their relative efficiency (e.g., a household that con-
sumes more power in heating than the average might need
better isolation) and detecting faulty equipment.

Hidden Markov models (HMMs) characterize time vary-
ing sequences with a simple yet powerful latent variable
model [6]. HMMs have been a major success story in many
fields involving complex sequential data, including speech
[7] and handwriting [8] recognition, computational molecu-
lar biology [9] and natural language processing [10]. In
most of these applications, the model topology is deter-
mined in advance and the model parameters are estimated
by an expectation maximization (EM) procedure [11],
whose particularization is also known as the Baum-Welch
(or forward-backward) algorithm [12]. However, both the
standard estimation procedure and the model definition for
HMMs suffer from important limitations as not considering
the complexity of the model (making it hard to avoid over
or underfitting) and needing to pre-specify the model struc-
ture. In [13], the authors proposed an inference algorithm
for HMMs based on reversible jump Markov chain Monte
Carlo (RJMCMC) techniques [14] to address the model
selection problem, which can be used to estimate both the
parameters and the number of hidden states of an HMM in
a Bayesian framework.

Factorial HMMs (FHMMs) model the observed time
series with independent parallel HMMs [15]. These parallel
HMMs can be seen as several independent causes affecting
the observed time series or, alternatively, as a simplification
of a hidden state transition matrix into several smaller tran-
sition matrices. However, in many cases we do not know
how many causes (HMMs) there are and how many states
would be needed in each Markov chain.

Bayesian nonparametric (BNP) models have appeared
as a replacement of classical finite-dimensional prior distri-
butions with general stochastic processes, allowing an
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open-ended number of degrees of freedom in amodel [16]. In
the literature, many nonparametric extensions of standard
time series models can be found. The hierarchical Dirichlet
process (HDP) has been proposed to define anHMMwith an
infinite number of latent states called HDP-HMM [17]. This
model has been applied to speaker diarization in [2]. The
nonparametric extension of the FHMM in [15] is the infinite
factorial (binary) HMM (IFHMM) [18], which defines a prob-
ability distribution over an unbounded number of binary
Markov chains. We can also find a nonparametric hierarchi-
cal HMM [19], in which the number of levels in the hierarchy
is potentially infinite.

In this paper, we build a BNP generative model to deal
with time series, with the capacity of finding behavioral
patterns in the data and learning the number of agents
from their effects on the observations, e.g., the number of
devices that are active in a home. We also infer the state
for every agent without limiting the precise number of
states in which they can be. Our model can be understood
as an IFHMM in which the number of states in each chain
is not known or bounded. We hence refer to our model as
infinite factorial unbounded-state HMM (IFUHMM). The
extension to IFUHMM is not straightforward, as we need
to balance the potentially infinite parallel chains with the
number of states in each chain. We should not only be able
to explain the observations, but doing it in a meaningful
way, so that (for instance) the results can help people in
power saving by minimizing the power consumption of
the most consuming devices.

We construct the IFUHMM in two steps. We first build
an FHMM in which the number of states, Q, is a random
variable drawn from an infinite discrete probability distri-
bution. Then, an unbounded number of parallel Markov
chains are generated following a nonbinary Markov Indian
buffet process (mIBP), similar to the binary IFHMM in [18].
Hence, we can define a distribution over integer-valued
matrices satisfying three properties: 1) the potential number
of columns (Markov chains) is unbounded; 2) the number
of states in the Markov chains can be arbitrarily large; and,
3) the rows (representing time steps) follow independent
Markov processes. We develop an MCMC inference algo-
rithm that allows estimating not only the parameters of the
model, but also the number of states and the number of par-
allel chains of the proposed IFUHMM.

In our experiments with power disaggregation data, we
show that the IFHMM in [18] is capable of fitting the
observed sequence, as well as our IFUHMM does, but the
binary parallel chains do not have direct interpretation as
individual devices and we would need to combine several
of them to describe each device, which leads to a complex
combinatorial problem in real life scenarios with a large

number of causes with many states. Due to the more flexi-
ble unbounded prior, our IFUHMM is more generally
applicable.

The rest of the paper is organized as follows. In Section 2,
we introduce the nonbinary IFHMMwith a fixed number of
latent states, and a Gaussian observation model is proposed
in Section 3. In Section 4, three inference algorithms for this
model are developed: two MCMC methods based on Gibbs
and slice sampling, and a variational inference algorithm.
Section 5 introduces an infinite discrete prior distribution
over the number of hidden states and an inference method
that allows learning both the number of parallel chains and
states. Sections 6 and 7 are respectively devoted to the
experiments and conclusions.

2 NONBINARY INFINITE FACTORIAL HMM

The model proposed in this section is a nonbinary extension
of the IFHMM developed in [18]. The proposed model pla-
ces a prior distribution over integer-valued matrices with
an infinite number of columns (each representing a Markov
chain), in which the values of their elements correspond to
the labels of the hidden states. Therefore, under this con-
struction, the values of the elements of the matrix are
exchangeable. This approach differs from [20], in which the
authors propose a prior distribution over integer-valued
matrices with an infinite number of columns, but the ele-
ments are ordered according to their cardinality.

2.1 Finite Model

We depict the graphical model for a factorial HMM in Fig. 1,
in which M, Q and T stand, respectively, for the number of
chains, the number of states of the Markov model, and the
number of time steps. In this figure, stm 2 f0; 1; . . . ; Q� 1g
represents the hidden state at time instant t in the m-th
chain and all the states stm are grouped together in a T �M
matrix denoted by S. For simplicity, we assume that s0m ¼ 0
for all the Markov chains.

For each chain m, the states stm follow an HMM with
transition probabilities contained in the Q�Q matrix Am,
whose rows are denoted by amq (q ¼ 0; . . . ; Q� 1). Hence,

amq corresponds to the transition probability vector from

state q in chain m. Thus, under this model, the transition
probability matrices Am are independently distributed for
each Markov chain m ¼ 1; . . . ;M. As the variables stm fol-
low an HMM, we can write that

stmjsðt�1Þm;Am � amsðt�1Þm: (1)

In order to be able to extend the number of parallel chains
to infinity, and similarly to the IFHMM [18], we need to con-
sider an inactive state. Whenwe letM go to infinity, we have
to ensure that for a finite value of T , only a finite subset of the
parallel chains become active, while the rest of them remain
inactive and do not influence the observations. We consider
that the state 0 corresponds to the inactive state and, there-
fore, stm ¼ 0 indicates that themth chain is not active at time
t. Hence, as shown in Fig. 1, the transition probability vectors
amq are differently distributed for q ¼ 0 (inactive state) than

for the rest of the states. We place a beta prior over the self-
transition probability of the inactive state, i.e.,

Fig. 1. Graphical model of the nonbinary finite FHMM.

VALERA ETAL.: INFINITE FACTORIAL UNBOUNDED-STATE HIDDEN MARKOV MODEL 1817



amja � Beta 1;
a

M

� �
; (2)

and set the transition probability vector from the inactive
state to

am0 ¼ amð1� amÞpm1 . . . ð1� amÞpmQ�1

h i
; (3)

where

pmjQ; g � DirichletðgÞ: (4)

Under this construction, the probability distribution over
the vector am0 can be easily derived by applying the linear
transformation property of random variables from am and
pm to am0 , yielding

p
�
am0 jQ;a; g

� ¼ p
�
am00ja

�
p
�
am01; . . . ; a

m
0ðQ�1Þjam00; g

�
¼ Beta am00

���1; a
M

� ��
1� am00

�2�Q

�Dirichlet
am01

1� am00
; . . . ;

am0ðQ�1Þ
1� am00

����g� �
;

(5)

where the elements of vector am0 are denoted by am0i, for
i ¼ 0; . . . ; Q� 1. In Eqs. (2) and (4), a is the concentration
parameter, which controls the probability of leaving state 0,
and g incorporates a priori knowledge about the transition
probabilities from the inactive state to any other state (i.e.,
1; . . . ; Q� 1).

For the active states (q ¼ 1; . . . ; Q� 1), the transition
probability vectors are distributed as

amq jQ;b0;b � Dirichletðb0;b; . . . ;bÞ; (6)

where b0 and b model the a priori information about the
transition probabilities from states other than 0.

Similarly to the binary mIBP in [18], we can obtain the
probability distribution over the matrix S after integrating
out the transition probabilities, yielding the expression in
(7), where elements of vector amq are denoted by amqi , contain-

ing the probability of transitioning from state q to state i in
the Markov chainm. Additionally, nm

qi counts the number of

transitions from state q to state i in chain m, and nm
q� repre-

sents the number of transitions from state q to any other

state in chainm, namely, nm
q� ¼

PQ�1
i¼0 nm

qi .

pðSjQ;a;b0; b; gÞ ¼
Z

pðSjfAmgMm¼1Þ
YM
m¼1

pðAmjQ;a;b0; b; gÞdAmð Þ

¼
YM
m¼1

a

M
G ðQ� 1Þgð Þ
GðgÞð ÞQ�1

YQ�1

i¼1

Gðnm
0i þ gÞ

G
XQ�1

i¼1

ðnm
0i þ gÞ

 !Gðnm
00 þ 1ÞG a

M
þ
XQ�1

i¼1

nm
0i

 !
G nm

0� þ 1þ a

M

� �
2666664

�
YQ�1

q¼1

G b0 þ ðQ� 1Þbð Þ
Gðb0Þ GðbÞð ÞQ�1

Gðnm
q0 þ b0Þ

YQ�1

i¼1

Gðnm
qi þ bÞ

G nm
q� þ b0 þ ðQ� 1Þb

� �
0BBBB@

1CCCCA
377775:

(7)

2.2 Taking the Infinite Limit

As the number of independent Markov chains M tends to
infinity, the probability of a single matrix S in Eq. (7) van-
ishes in this model. This is not a limitation, since we are not
interested in the probability of a single matrix, but in the
probability of the whole equivalence class of S. Similarly to
the results for the IBP in [21], the equivalence classes are
defined with respect to a function on integer-valued matri-
ces, called lofð�Þ (left-ordered form). In particular, lofðSÞ is
obtained by sorting the columns of the matrix S from left to
right by the history of that column, which is defined as the
magnitude of the base-Q number expressed by that column,
taking the first row as the most significant value.

Additionally, since the elements of matrix S can be arbi-
trarily relabeled, we can also define a permutation function
on the labels of the states in S. Specifically, we say that two
matrices S1 and S2 with elements in f0; . . . ; Q� 1g are in
the same equivalence class if there exists a permutation
function fð�Þ on the set f0; . . . ; Q� 1g, subject to fð0Þ ¼ 0,
such that, when applied to all the elements of S2 to obtain

S0
2, lofðS1Þ ¼ lofðS0

2Þ. Roughly, two matrices are equivalent
if they are equal after a particular reordering of their col-
umns and/or relabeling of their nonzero elements. Note
that the element 0 cannot be relabeled, since it represents
the inactive state and therefore requires special treatment,
as detailed earlier.

Let us denote by ½S� the set of equivalent matrices to S as

defined above. There are ðQ�1Þ!
ðQ�NQÞ!Nf

M!QQT�1

h¼0
Mh!

matrices in this

set, with Mh being the number of columns with history h,
NQ being the number of visited states in S, including 0, and
where Nf is the number of (previously defined)

lim
M!1

pð½S�jQ;a;b0;b; gÞ ¼ lim
M!1

ðQ� 1Þ!
ðQ�NQÞ!Nf

M!YQT�1

h¼0

Mh!

pðSjQ;a; b0;b; gÞ ¼
ðQ� 1Þ!

ðQ�NQÞ!Nf

aMþYQT�1

h¼1

Mh!

e�aHT

�
YMþ

m¼1

Gðnm
00 þ 1ÞG

XQ�1

i¼1

nm
0i

 !
Gðnm

0� þ 1Þ

G ðQ� 1Þgð Þ
YQ�1

i¼1

Gðnm
0i þ gÞ

G
XQ�1

i¼1

ðnm
0i þ gÞ

 !
GðgÞð ÞQ�1

YQ�1

q¼1

G b0 þ ðQ� 1Þbð Þ
Gðb0Þ GðbÞð ÞQ�1

Gðnm
q0 þ b0Þ

YQ�1

i¼1

Gðnm
qi þ bÞ

G nm
q� þ b0 þ ðQ� 1Þb

� �
0BBBB@

1CCCCA
2666664

3777775:
(8)
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permutation functions fð�Þ such that, when applied to all the
elements of S to obtain S0, lofðSÞ ¼ lofðS0Þ. Since all the
matrices in ½S� have the same probability, we can easily
compute pð½S�jQ;a;b0;b; gÞ. Taking the limit as M tends to
infinity, we reach Eq. (8), where Mþ stands for the number
of nonzero columns, and HT for the T th harmonic number,

i.e.,HT ¼PT
j¼1

1
j.

This model is exchangeable in the columns, in the integer
labels used to denote the elements of S, and it is also Mar-
kov exchangeable in the rows. The Markov exchangeability
property holds because pð½S�jQ;a;b0;b; gÞ only depends on
the number of transitions among states nm

qi , and not on the

particular sequence of states. We recover the binary mIBP in
[18] by setting Q ¼ 2. Similarly to the IFHMM in [18], we
describe a culinary metaphor analogous to the IBP in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2015.2498931.

2.3 Stick-Breaking Construction

Since the representation of the model above is similar to the
binary mIBP in [18], a stick-breaking construction is also
readily available. This construction allows using a combina-
tion of slice sampling and dynamic programming for infer-
ence, as detailed in Section 4.2.

The stick-breaking construction requires defining a dis-
tribution over the parameters corresponding to the transi-
tion probabilities am sorted in ascending order, namely,

aðmÞ. For convenience, we define the complementary proba-

bilities cðmÞ ¼ 1� am
0
, such that cð1Þ > cð2Þ > . . . Hence, fol-

lowing a similar procedure as in the stick breaking
construction of the standard IBP in [22], we can write

pðcð1ÞÞ ¼ Betaða; 1Þ; (9)

and

pðcðmÞjcðm�1ÞÞ / ðcðmÞÞa�1
Ið0 � cðmÞ � cðm�1ÞÞ; (10)

where Ið�Þ is the indicator function, which takes value one if
its argument is true and zero otherwise.

Let aðmÞ
q and pðmÞ be the variables corresponding to,

respectively, am
0

q and pm0
sorted by chains according to the

values of am
0
. Then, since am

0
q and pm0

follow the distribu-

tions in Eqs. (6) and (4), respectively, which are independent

of m0, the sorted variables aðmÞ
q and pðmÞ have also the same

prior distributions.

3 GAUSSIAN OBSERVATION MODEL

We use the nonbinary mIBP as a building block for a full
probabilistic model, in which S can be interpreted as an
arbitrarily large set of parallel Markov chains. We add a
likelihood model which describes the distribution over the
T �D observation matrix X, composed of T vectors xt of
length D corresponding to the available observations at
time instants t ¼ 1; . . . ; T . Note that there are three condi-
tions for the likelihood model to be valid as M tends to
infinity: i) the likelihood must be invariant to permutations
of the Markov chains; ii) it must also be invariant to the par-
ticular labeling of the nonzero elements of S; and iii) the dis-
tribution on xt cannot depend on any parameter of chain m
if stm ¼ 0. Roughly, the likelihood must be invariant for any
matrix in the set of equivalent classes of S.

Our choice for the likelihood model is shown in Fig. 2, in
which X is distributed as a Gaussian random matrix with

independent elements, each with variance s2
x, i.e.,

pðXjS;FF1; . . . ;FFQ�1; s
2
xÞ ¼

1

ð2ps2
xÞ

TD
2

exp

(
� 1

2s2
x

� trace

"
X�

XQ�1

q¼1

ZqFFq

 !>
X�

XQ�1

q¼1

ZqFFq

 !#)
;

(11)

where Zq is defined as a binary T �M matrix with elements
ðZqÞtm ¼ 1 if stm ¼ q and zero otherwise, and FFq are M �D

matrices, with M being the number of columns in S. Thus,
the mean value for xt depends on the additive contribution
of all chains at time instant t.

We place a Gaussian prior with independent elements
over the matrices FFq, i.e.,

pðFFqjmmq; s
2
fÞ ¼

1�
2ps2

f

�DM
2

exp � 1

2s2
f

(

� trace
	ðFFq � 1MmmqÞ>ðFFq � 1MmmqÞ


)
;

(12)

where 1M represents a column vector of length M with all
elements equal to one and mmq are D-dimensional Gaussian

distributed row vectors with mean mm0 and covariance

matrix s2
0ID, i.e., pðmmqjs2

0Þ ¼ N ðmm0; s
2
0IDÞ, where ID stands

for the identity matrix of size D. We include the hyperpara-

meter s2
f to control the variance of the parameters corre-

sponding to different chains within every state q

(q ¼ 1; . . . ; Q� 1). For a small value of s2
f=s

2
0, FFq is close to

its mean and therefore the parameters for any particular
state q are similar through all the chains. For larger values

of s2
f=s

2
0, the parameters may seem decorrelated for the

same state at different chains.

4 INFERENCE

Inference in BNP models is typically addressed by Markov
chain Monte Carlo (MCMC) methods, such as Gibbs

Fig. 2. Graphical observation model for the nonbinary infinite factorial
HMM.
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sampling [2], [17] or beam sampling [23]. Additionally, vari-
ational inference has appeared as a complementary alterna-
tive toMCMCmethods as a general source of approximation
methods for inference in large-scale statistical models [15],
[24], [25]. In the spirit of describing a general learning algo-
rithm,we have developed bothMCMCand variational infer-
ence algorithms, as they have different properties.

First, we put forward two MCMC methods: one consists
of Gibbs sampling and the other is a blocked sampler based
on a forward-filtering backward-sampling algorithm. Sec-
ond, we propose a variational inference algorithm, which
can be viewed as a combination of the main ideas from the
finite variational approach for the IBP in [24] and the varia-
tional inference proposed for infinite HMMs in [25].

4.1 Gibbs Sampling

MCMC methods have been broadly applied to infer the
latent structure S from a given observation matrix X (see,
e.g., [18], [21]). We focus on Gibbs sampling for posterior
inference over the mIBP matrix. The algorithm iteratively
samples the value of each element stm given the remaining
variables, i.e., it samples from

pðstm ¼ kjX;S:tmÞ / pðstm ¼ kjS:tmÞpðXjSÞ; (13)

where S:tm represents the matrix S without the element stm.
For clarity, throughout this subsection we drop the depen-
dence on the hyperparameters in the notation.

Hence, for t ¼ 1; . . . ; T , the Gibbs sampler proceeds as
follows:

1) For m ¼ 1; . . . ;Mþ, sample element stm from (13).
Then, if the mth chain remains inactive for all the
time instants, remove that chain and updateMþ.

2) Draw Mnew columns of S with states stm (m ¼ Mþ þ
1; . . . ;Mþ þMnew) from a distribution where the

prior is PoissonðMnewj aTÞ � 1
ðQ�1ÞMnew

, and update Mþ.

For each value of Mnew, we try all the possible states
in which the new chains can be at time t, and we
restrict the possible values of Mnew to a finite set (as
in [21]).

For conciseness, let us denote the previous and the fol-
lowing states to stm as j ¼ sðt�1Þm and ‘ ¼ sðtþ1Þm, respec-
tively. Hence, we can compute the first term in Eq. (13) as
detailed in Appendix B, available in the online supplemen-
tal material.

In order to compute the second term in Eq. (13), we first
need to integrate out mmq as

pðFFqjSÞ ¼
Z

pðFFqjS;mmqÞpðmmqÞdmmq

¼ 1

ð2pÞDMþ=2
s
ðMþ�1ÞD
f ðs2

0Mþ þ s2
fÞD=2

� exp � 1

2s2
f

trace ðFFq �MFÞ>SS�1
F ðFFq �MFÞ

h i( )
;

(14)

where SSF ¼ ðIMþ � s2
0

s2
0
Mþþs2

f

1Mþ1
>
MþÞ�1 and MF ¼ s2

f

s2
0
Mþþs2

f

SSF1Mþmm0. Then, pðXjSÞ can be computed integrating out all

matrices FFq, yielding

pðXjSÞ ¼ 1

ð2ps2
xÞTD=2jSSQ�1jD=2

� exp � 1

2s2
x

trace X�MXð Þ>SS�1
Q�1 X�MXð Þ

h i� �
;

(15)

being MX ¼PQ�1
q¼1 SSqMq, and where the T � T matrix SS

�1
Q�1

and the T �DmatricesMq can be iteratively computed as

SS
�1
q ¼ SS

�1
q�1 � SS

�1
q�1ZqWqZ

>
q SS

�1
q�1 (16)

and

Mq ¼ s2
x

s2
0Mþ þ s2

f

SS
�1
q�1ZqWq1Mþmm0; (17)

withWq given by

W�1
q ¼ Z>

q SS
�1
q�1Zq þ s2

x

s2
f

SS
�1
F ; (18)

for q ¼ 1; . . . ; Q� 1. For the first iteration, SS0 is the identity
matrix of sizeMþ.

4.2 Blocked Sampling

It is common knowledge that Gibbs sampling may present
slow mixing when applied to time series models, due to
potentially strong couplings between successive time steps
[18], [26]. A typical approach to circumvent this limitation
consists on blocked sampling the latent states stm for each
chain, i.e., sampling a whole Markov chain using a forward-
filtering backward-sampling algorithm, conditional on
keeping all other Markov chains fixed. In order to apply this
dynamic programming step, we also need a slice sampling
algorithm [27] which adaptively truncates our model into a
finite FHMM, performing exact inference without assuming
alternative approximate models [18], [23].

Here, we make use of the stick-breaking construction of
the model, presented in Section 2.3, and introduce an auxil-
iary slice variable # distributed as

#jS; fcðmÞg � Uniform
�
0;minm:9t;stm 6¼0c

ðmÞ
�
; (19)

resulting in the joint distribution

pð#;S; fcðmÞ;pðmÞ; aðmÞ
q gÞ

¼ pð#jS; fcðmÞgÞpðS; fcðmÞ;pðmÞ; aðmÞ
q gÞ:

(20)

Again, the dependence on the hyperparameters has been
dropped in the notation.

From (20), it is clear that the original model has not been
altered, since it can be recovered after integrating out the
slice variable. However, when we condition the posterior
over S on #, we have that

pðSjX; #; fcðmÞ;pðmÞ; aðmÞ
q gÞ

/ pð#jS; fcðmÞgÞpðSjX; fcðmÞ;pðmÞ; aðmÞ
q gÞ;

(21)

which forces all columns of S for which cðmÞ < # to be zero.
Our model ensures that there can only be a finite number of

columns for which cðmÞ > # and, therefore, conditioning on
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the slice variable effectively truncates the model into a finite
FHMM. Note that the distribution in Eq. (19) does not need
to be uniform, and a flexible Beta distribution can be used
instead [18].

Unlike the Gibbs sampler, the blocked sampling algo-
rithm does not allow us to integrate out the matrices FFq,
and they have to be sampled from the corresponding Gauss-
ian posterior distributions. The variables mmq can still be inte-

grated out. Hence, the blocked sampling algorithm
iteratively applies these steps:

1) Sample the slice variable # from (19). This step may
also involve adding new chains.

2) For each represented chain m, sample the mth col-
umn of S via dynamic programming. Compact the
representation by removing all chains in the all zero
state.

3) For each active chain,1 sample cðmÞ, pðmÞ and faðmÞ
q g.

4) Sample the matrices FFq.
In Step 1, # is first sampled from (19). Then, starting from

m ¼ Mþ þ 1, new variables cðmÞ are iteratively sampled
from

pðcðmÞjcðm�1ÞÞ / exp a
XT
t¼1

1

t
ð1� cðmÞÞt

 !
� ðcðmÞÞa�1ð1� cðmÞÞT Ið0 � cðmÞ � cðm�1ÞÞ

(22)

until cðmÞ < #. Since Eq. (22) is log-concave in log cðmÞ [22],
we can apply adaptive rejection sampling (ARS) [28]. Let

Mnew be the number of new variables cðmÞ that are greater
than the slice variable. If Mnew > 0, then we update Mþ,
expand the representation of matrix S by adding Mnew zero
columns, and we sample the values of the new rows of
matrices FFq from the corresponding Gaussian conditional
distributions, given the rest of rows of matrices FFq. For each

new chain, we also draw the new variables pðmÞ and

faðmÞ
q gQ�1

q¼1 from the prior.

Step 2 consists on a blocked sampler, which runs a for-
ward-filtering backward-sampling sweep on one column of
S, having fixed the rest of columns [18].

In Step 3, for each chain, cðmÞ is sampled from [22]

pðcðmÞjS; cðm�1Þ; cðmþ1ÞÞ / ðcðmÞÞT�n
ðmÞ
00

�1

� ð1� cðmÞÞn
ðmÞ
00 Iðcðmþ1Þ � cðmÞ � cðm�1ÞÞ;

(23)

while the posteriors for pðmÞ and aðmÞ
q (given S) are, respec-

tively, Dirichlet distributions with parameters

g þ n
ðmÞ
01 ; . . . ; g þ n

ðmÞ
0ðQ�1Þ;

and

b0 þ n
ðmÞ
q0 ;bþ n

ðmÞ
q1 ; . . . ;bþ n

ðmÞ
qðQ�1Þ;

where we denote by n
ðmÞ
qi the number of transitions from

state q to state i in the mth chain, considering the ordering
given by the stick-breaking construction.

In Step 4, all matrices FFq can be simultaneously sampled
from the corresponding Gaussian posterior distribution
given S and X.

4.3 Variational Inference

Variational inference provides a complementary alternative
to MCMC methods as a general source of approximation
methods for inference in large-scale statistical models [29].
Variational inference algorithms are in general computation-
ally less expensive compared to MCMC methods, but they
involve solving a non convex optimization problem, which
implies that the algorithmmay get trapped in local optima.

HMM-specific variational inference algorithms can be
found in [15], [25]. In [25], a variational inference algorithm
for the infinite HMM is proposed. In [15] the authors
develop several inference algorithms for the standard facto-
rial HMM where they include two variational methods: a
completely factorized and a structured variational algo-
rithm. While the former method uses a completely factor-
ized variational distribution to approximate the posterior
probability of the model by assuming independence among
the state variables, the structured variational method pre-
serves much of the probabilistic structure of the original sys-
tem by considering the dependencies among the states.
Structured variational methods are generally preferred
since they allow reducing the number of variational param-
eters and, therefore, they correspond to coordinate-wise
optimization over bigger coordinate blocks than the
completely factorized approaches. The structured varia-
tional algorithm in [15] also requires a forward-backward
algorithm within each Markov chain to implement an effi-
cient and exact inference.

We develop a variational inference algorithm for a finite
(and large enough) value of the number of chains, M. Thus,
we consider the finite model in Section 2.1. The hyperpara-
meters of the model are gathered in the set

H ¼ fQ;a; g;b0;b; s
2
0; s

2
f; s

2
x;mm0g and, similarly, we denote

the set of unobserved variables in the model by
C ¼ fS; amj ; am;pm;FFk;mmkg, for j; k ¼ 1; . . . ; Q� 1 and

m ¼ 1; . . . ;M.
The joint probability distribution over all the variables is

given by pMðC;XjHÞ, where the subscript M indicates that
the probability distribution has been truncated to M Mar-
kov chains. From the definition of the model, pMðC;XjHÞ
can be factorized as follows:

pMðC;XjHÞ ¼
YQ�1

k¼1

�
pM
�
FFkjmmk; s

2
f

�
pM
�
mmkjs2

0

�� !

�
YM
m¼1

YT
t¼1

pMðstmjsðt�1Þm;AmÞ
 !

�
YM
m¼1

YQ�1

j¼1

pMðamj jQ;b0;bÞ
 !

pMðpmjQ; gÞpMðamjaÞ
 !

� pMðXjS;FF1; . . . ;FFQ�1Þ:
(24)

We approximate pMðCjX;HÞ with the variational distri-
bution qðCÞ given in Eq. (25), which is completely factorized1. An active chain is a chain in which not all states are zero.
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except for the state matrix S. We use the structured varia-
tional distribution for qðSÞ developed in [15], which pre-
serves much of the probabilistic structure of the original
model while maintaining the tractability of the inference.
Thus, the variational distribution can be written as

qðCÞ ¼ qðSÞ
YQ�1

k¼1

qðFFkÞqðmmkÞð Þ
 !

�
YM
m¼1

qðpmÞqðamÞ
YQ�1

j¼1

q
�
amj
� ! !

;

(25)

being

qðSÞ ¼
YM
m¼1

1

Zm
Q

YT
t¼1

qðstmjsðt�1ÞmÞ; (26)

where Zm
Q are the constants that ensure that qðSÞ is properly

normalized. The specific form for every term in Eqs. (25)
and (26) is given by

qðstm ¼ kjsðt�1Þm ¼ jÞ / Pm
jk � bmkt; (27)

qðFFkÞ ¼ 1

ð2pÞMD=2jLLkjD=2

� exp � 1

2
trace ðFFk � LkÞ>LL�1

k ðFFk � LkÞ
h i� �

;

(28)

qðmmkÞ ¼ N ðvvk;VVkÞ; (29)

qðpmÞ ¼ Dirichlet
�
"m1 ; . . . ; "

m
Q�1

�
; (30)

qðamÞ ¼ Beta
�
nm1 ; n

m
2

�
; and (31)

qðamj Þ ¼ Dirichlet
�
tmj0; . . . ; t

m
jðQ�1Þ

�
: (32)

Inference involves optimizing the variational parameters
of qðCÞ to minimize the Kullback-Leibler divergence of
pMðCjX;HÞ from qðCÞ, i.e., DKLðqjjpMÞ. This optimization
can be performed by iteratively applying the fixed-point set
of equations given in Appendix C, available in the online
supplemental material.

5 PRIOR ON THE NUMBER OF STATES

The model in Section 2, as well as the inference algorithms
in Section 4, assumes that the number of states Q in the Mar-
kov chains is known. We now deal with the case where Q is
unknown and it must also be inferred from the data. Specifi-
cally, we develop an MCMC inference method to infer both
the number of states Q and the number of parallel chains
Mþ that constitute the matrix S.

Let us assume that Q is a random variable and we place a
prior over it, e.g., a Poisson distribution with parameter �,
namely,

pðQj�Þ ¼ �Q�2e��

ðQ� 2Þ! ; Q ¼ 2; . . . ;1: (33)

As shown in Eq. (8), the probability of the whole equiva-
lent class of the mIBP matrix S, denoted by ½S�, is condi-
tioned on the number of states Q. In order to obtain the
marginalized (with respect to the number of states Q) prob-
ability distribution over ½S�, variable Q can be integrated
out, yielding

pð½S�ja;b0;b; gÞ ¼
X1
Q¼2

pð½S�jQ;a;b0;b; gÞpðQj�Þ: (34)

We remark that the term pð½S�jQ;a;b0; b; gÞ vanishes if S
contains any element not included in the set f0; . . . ; Q� 1g.

The summation in Eq. (34) is finite, as the series is con-
vergent. To show this, it suffices to check that

lim
Q!1

pð½S�jQþ 1;a;b0;b; gÞpðQþ 1j�Þ
pð½S�jQ;a;b0;b; gÞpðQj�Þ < 1: (35)

This condition holds since the limit can be simplified2 to

limQ!1
pðQþ1j�Þ
pðQj�Þ , which is less than one for every � > 0.

5.1 Inference

Due to the flexibility of the proposed model, the inference
algorithm involves a trade-off between the number of
chains and the number of states. We need to find out a likely
combination of the values of both variables given the
observed data through the search of the mIBP matrix S and
value of Q from the joint probability pð½S�; QjX;H0Þ, where
H0 is defined as the set of hyperparameters of the model,

i.e.,H0 ¼ fa; g;b0;b; s
2
0; s

2
f; s

2
x;mm0; �g.

We propose an MCMC inference algorithm that obtains
samples from the target distribution pð½S�; QjX;H0Þ. An
MCMC method dealing with HMMs can be found in [13],
where a reversible jump MCMC (RJMCMC) algorithm is
used to estimate not only the parameters of the model, but
also the number of states Q of the HMM. RJMCMC meth-
ods, which were first introduced in [14] for model selection,
allow the sampler to jump between parameter subspaces of
differing dimensionality.

The RJMCMC algorithm for HMMs can be almost readily
applied to our model to obtain samples from the full poste-
rior pð½S�; Q; fAmg; fmmqg; fFFqgjX;H0Þ. Due to the multiplicity
of Markov chains and the high dimensionality of the pro-
posed IFHMM, the acceptance probabilities for transdimen-
sional jumps under RJMCMC techniques turns out to be
extremely low, which makes convergence too slow to be
practical.

Since we can obtain the marginalized distribution
pð½S�; QjX;H0Þ, where dimension-changing variables have
been integrated out, RJMCMC methods are not needed and
we apply a standard Metropolis-Hastings algorithm
instead. Nevertheless, we adapt the procedure in [13] to
develop our inference algorithm. Hence, our MCMC sam-
pler proceeds iteratively as follows:

2. Note that, according to Eq. (8), in the limit when Q tends to infin-

ity pð½S�jQþ1;a;b0 ;b;gÞ
pð½S�jQ;a;b0 ;b;gÞÞ ¼ 1.
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1) Update the allocation matrix S for a given value ofQ.
2) Consider splitting a component into two or merging

two into one.
3) Consider the birth of a new state or the death of an

empty state (i.e., a state that is not assigned in S).
The number of active parallel Markov chains is updated

in the first step, as the nonparametric nature of the model
allows the sampler to infer this quantity. The two latter steps
allow increasing or decreasing the number of statesQ by one.

The first step involves either a sweep of the Gibbs sam-
pler as detailed in Section 4.1, or a sweep of the blocked
sampling described in Section 4.2. In the latter case, the tran-
sition probabilities and the matrices FFq must be sampled
(Steps 3 and 4 in Section 4.2) before performing Step 1. In
our experiments we apply the blocked sampling because it
is faster than the Gibbs sampler and also presents better
mixing properties.

In the second step, we choose to split with probability bQ
and to merge with probability dQ ¼ 1� bQ. Naturally, d2 ¼ 0,
and we use bQ ¼ dQ ¼ 1=2 for Q ¼ 3; . . . ;1. This procedure
is similar to the split/merge move for the Dirichlet process
mixture model proposed in [30]. In the merge move, we start

from a matrix ~S andQþ 1 states and we randomly select two
of the nonzero states, q1 and q2, and try to combine them into a
single state q	, thus creating a matrix S with Q states. In the
split move, in which we start from a matrix S and Q states, a
nonzero state q	 is randomly chosen and split into two new

ones, q1 and q2, ending with a new matrix ~S and Qþ 1 states.
The acceptance probabilities for the split and merge moves

are given byminð1; RÞ andminð1; R�1Þ, respectively, where

R ¼ pð½~S�;Qþ 1jX;H0Þ
pð½S�;QjX;H0Þ

dQþ1P
d
select

bQP
b
selectPalloc

; (36)

which ensures that the detailed balance condition is satis-
fied. In (36), Pd

select denotes the probability of selecting two
specific components in the merge move and is given by

2=ðQðQ� 1ÞÞ, Pb
select denotes the probability of selecting a

specific component in the split move and is given by
1=ðQ� 1Þ, and Palloc denotes the probability of making the

particular allocation of the elements in matrix ~S. Therefore,
Palloc depends on how the elements in S taking value q	 are
split into q1 and q2. Although the simplest allocation method
could consist on splitting completely at random, other
methods can be used to increase the acceptance probability.
We choose to apply a restricted Gibbs sampling scheme (as
in [30]) for those states in S taking value q	. Rearranging
and simplifying the factors in Eq. (36), R can be expressed
for the split and merge moves as

R ¼ pðXj½~S�; s2
0; s

2
f; s

2
x;mm0Þ

pðXj½S�; s2
0; s

2
f; s

2
x;mm0Þ

pð½~S�jQþ 1;a;b0;b; gÞ
pð½S�jQ;a;b0;b; gÞ

� pðQþ 1j�Þ
pðQj�Þ

dQþ12=Q

bQPalloc
:

(37)

In the third step, we first choose at random between the
birth or the death of a state with probabilities bQ and dQ,
respectively. The removal of a state is accomplished by ran-
domly selecting an empty component and deleting it,

thereby jumping from Qþ 1 states to Q. Matrix ~S is

relabeled so that its elements belong to the set
f0; . . . ; Q� 1g, resulting in matrix S. In the birth move, we
start from a model with Q states and we want to create a
new empty component. Matrix S is unaltered in this pro-

cess, i.e., ~S ¼ S. The acceptance probabilities for the birth

and death moves are minð1; RÞ and minð1; R�1Þ, respec-
tively, where in this case R can be simplified as

R ¼ pð½~S�jQþ 1;a;b0;b; gÞ
pð½S�jQ;a;b0;b; gÞ

pðQþ 1j�Þ
pðQj�Þ

dQþ1

bQðQ0 þ 1Þ ; (38)

with Q0 being the number of empty components before the
birth of a new empty state. Note that, although the birth
and the split moves seem similar, both of them are useful.
In the birth step we allow the sampler to create a new empty
state (which implicitly involves to have also new observa-
tion parameters for this state) that may help to explain data
points that could not be explained by the existent states,
while in the split move we are explaining the data in more
detail by splitting a state into two new states.

Since the detailed balance, irreducibility and aperiodic-
ity properties are satisfied (see [30], [31] for further details),
the sampler behaves as desired in terms of converging to a
realization from the marginalized posterior distribution
pð½S�; QjX;H0Þ.

6 EXPERIMENTAL VALIDATION

We now validate our IFUHMM and proposed inference
algorithm on two real datasets on power disaggregation. To
this end, we first design a small scale experiment in which
we evaluate themixing properties of theMCMC-based infer-
ence algorithm described in Section 5.1, and compare the
results with the binary IFHMM in [18] (i.e., the IFHMMwith
Q ¼ 2 states) and with the standard FHMM. We then evalu-
ate the performance of the IFUHMM in solving the power
disaggregation problem undermore realistic scenarios.

The power disaggregation problem consists in, given the
aggregate whole-home power consumption signal, estimat-
ing both the number of active devices in the house and the
power draw of each individual device. Recently, this prob-
lem has been addressed in [3] by applying a factorial hidden
semi-Markov model (HSMM) and using an expectation
maximization algorithm, and in [32] using an explicit-
duration hierarchical Dirichlet process HSMM. In both
works, the number of devices in the house is assumed to be
known. Furthermore, the former uses training data to learn
the device models, and the latter includes prior knowledge
to model each specific device and ensures that all the devi-
ces are switched on at least once in the time series.

Our method is fully unsupervised, as it does not use any
training data to build device-specific models, and it assumes
an unknown number of devices. We believe this is the more
general approach to address the power disaggregation prob-
lem, because if we want to apply this algorithm widely, it is
unrealistic to think that we can obtain training information
for all households and we should not expect to have a model
for each potential device plugged in any home.

We validate the performance of the proposed IFUHMM
applied to the power disaggregation problem in two differ-
ent real databases:
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REDD database. The Reference Energy Disaggregation
Data Set (REDD) [33] monitors several homes at low and
high frequency for large periods of time. We consider
24-hour segments across 5 houses and choose the low-
frequency power consumption of 6 devices: refrigerator (R),
lighting (L), dishwasher (D), microwave (M), washer-dryer
(W) and furnace (F). We apply a 30-second median filter
and scale the data dividing by 100.

AMP database. The Almanac of Minutely Power Dataset
[34] records the power consumption of a single house using
21 sub-meters for an entire year (from April 1st, 2012 to
March 31st, 2013) at one minute read intervals. We consider
two 24-hours segments and choose eight devices: basement
plugs and lights (BME), clothes dryer (CDE), clothes washer
(DWE), kitchen fridge (FGE), heat pump (HPE), home office
(OFE), entertainment-TV, PVR, AMP (TVE) and wall oven
(WOE). We scale the data by a factor of 1=100.

Metric. In order to evaluate the performance of the differ-
ent algorithms, we compute the mean accuracy of the esti-
mated consumption of each device, which is measured as

acc ¼ 1�
PT

t¼1

PM
m¼1 jxðmÞ

t � x̂
ðmÞ
t j

2
PT

t¼1

PM
m¼1 x

ðmÞ
t

; (39)

where x
ðmÞ
t and x̂

ðmÞ
t are, respectively, the true and the esti-

mated power consumption by device m at time t [33]. If the
inferred number of devices Mþ is smaller than the true

number of devices, we use x̂
ðmÞ
t ¼ 0 for the undetected devi-

ces. If Mþ is larger than the true number of devices, we
group all the extra chains as an “unknown” device and use

x
ðunkÞ
t ¼ 0 to compute the accuracy. In order to compute the

accuracy, as our algorithm is unsupervised, we need to
assign each estimated chain to a device. We do that by sort-
ing the estimated chains so that the accuracy is maximized.

Experimental setup. In our experiments, we consider the
Gaussian observation model in Section 3 and, furthermore,
the FHMM considers that am0 follows the prior distribution
in Eq. (6). We set the hyperparameters to a ¼ 1, g ¼ 1,

b0 ¼ b ¼ 1, s2
0 ¼ 0, s2

f ¼ 10, s2
x ¼ 0:5, mm0 ¼ 15 and � ¼ 1. For

the IFUHMM, we speed up the inference by considering the
split/merge and birth/death moves once every several iter-
ations. We average the results provided by 20 independent
runs of the samplers (or the variational algorithm), with dif-
ferent random initializations. For the variational algorithm,
we estimate the states and observation parameters asbstm ¼ argmaxkqðstm ¼ kÞ and bFFk ¼ Lk.

6.1 Mixing Properties

In order to evaluate the mixing properties of the inference
algorithm in Section 5.1, we aggregate the power signals of
four devices of the AMP database (BME, CDE, DWE and
HPE) for a 24-hour segment. Then, we apply our IFUHMM,
the infinite binary FHMM (IFHMM), and the FHMM (with
M ¼ 4 chains and Q ¼ 4 states). Our objective in this section
is to analyze how increasing the flexibility of the model, by
including the number of chains (IFHMM) and also the num-
ber of states (IFUHMM) as latent variables, changes the mix-
ing properties of the algorithm.

To evaluate the mixing properties of the MCMC-based
inference algorithms for the three models we need to define
a function that depends on all the latent variables in the
model, and that can be applied for any given number of
states and chains. We choose the accuracy defined in Eq. (39)
and compute it for the last 10;000 samples of each algorithm.

We show in Fig. 3a the autocorrelation plot for the
IFUHMM. The thick line corresponds to the mean of the
autocorrelation plot for the 20 samplers, while the shaded
area covers twice the standard deviation. In this figure, we
observe that (on average) the autocorrelation falls below a
threshold of 0:1 after a few tens of iterations. Moreover, we
plot in Fig. 3b how many samples of the Markov chain
under each model we should collect until the autocorrela-
tion falls below 0:1. We show the median and the 10th,
25th, 75th and 90th percentiles in the standard box-plot for-
mat. For 50 percent of the cases, the IFUHMM needs only a
few tens of samples, while for the remaining 50 percent of
the simulations it needs at most a few hundreds of itera-
tions. Although the median number of samples for the
IFHMM is the smallest one (below 10), it needs hundreds
or even thousands of samples for the remaining 50 percent
of the simulations. Finally, the FHMM presents the poorest
mixing properties, needing thousands of samples for
75 percent of the cases.

Now, we evaluate the goodness of fit of the three models.
To this end, we show in Fig. 4 the best (among the 20 sam-
plers) achieved log-likelihood for the three models. In accor-
dance with Fig. 3b, the IFUHMM converges faster than the
IFHMM and the FHMM algorithms. Furthermore, the
IFUHMM presents the highest log-likelihood score, being
the IFHMM almost as good. In addition, we show in Table 1
the mean and standard deviation (over the 20 samplers) of
the accuracy provided by the three approaches, obtained

Fig. 3. Small scale experiment. (a) Autocorrelation plot for the IFUHMM.
(b) Number of samples for the autocorrelation to fall below 0:1.

Fig. 4. Evolution of the log-likelihood.

TABLE 1
Accuracy for the Small Scale Experiment

FHMM (Q ¼ 4,M ¼ 4) 0:47
 0:06
IFHMM (Q ¼ 2) 0:67
 0:10
IFUHMM 0:79
 0:08
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after averaging the accuracy values of the last 10;000 sam-
ples. We can see that although both the IFUHMM and the
IFHMM reach similar log-likelihood values (i.e., they can
explain the observed data), in terms of accuracy, the
IFUHMM is significantly better than the IFHMM.

To better understand this result, we depict in Fig. 5a the
histogram for the number of inferred chains under the
IFUHMM and the IFHMM, and in Fig. 5b the histogram for
the inferred number of states under the IFUHMM. These
histograms were obtained considering the last 10;000 sam-
ples of the 20 samplers. We observe that the IFUHMM infers
four chains 60 percent of the times, which corresponds to
the true number of devices, also inferring that the number
of states of the devices is Q ¼ 3. The binary IFHMM mostly
infers betweenMþ ¼ 5 andMþ ¼ 7 chains.

This explains why, although the IFUHMM and the
IFHMM present similar log-likelihood scores in Fig. 4, the
IFUHMM provides better accuracy. While the IFUHMM is
recovering the underlying process that generates the total
power consumption (allowing us to interpret each inferred
chain as a device), the IFHMM needs to aggregate several of
the inferred chains to construct the power consumption of
each device, leading to a deterioration in the resulting accu-
racy. We could improve the accuracy of the IFHMM by
combining several chains to fit each device. However, it
would lead to a complex combinatorial problem in real life
scenarios with a large number of devices with many states.
Moreover, in a real scenario in which we did not have the
ground truth, this solution for the poor accuracy of the
IFHMM would not help to know which devices consume
most. This is a typical example in which we have two non-
parametric models that can explain the observed data simi-
larly well, but while one of them (the IFUHMM) is
recovering the latent structure of the data, the other one (the
IFHMM) is just using its flexibility to explain the data but it
does not have etiological interpretation.

Regarding the FHMM, the sampler gets trapped in a
local optima. This explains its low log-likelihood and

accuracy, even though it has a priori knowledge of the true
number of devices.

6.2 Power Disaggregation

Now, we focus on solving more realistic power disaggre-
gation problems. For the AMP database, we consider two
24-hour segments and the eight devices detailed above. For
the REDD database, we consider a 24-hour segment across
five houses, with the six devices mentioned above. For both
databases, we compare the results provided by:

� A standard FHMM with Q ¼ 4 states and perfect
knowledge of the selected number of devices.

� The IFHMM with Q ¼ 4 states in Section 2.2, using
the variational algorithm in Section 4.3 truncated to
M ¼ 15Markov chains (Var-Q4).

� The IFHMM with Q ¼ 4 states in Section 2.2, using
the blocked sampling algorithm detailed in Sec-
tion 4.2 (IFHMM-Q4).

� The proposed IFUHMM in Section 5.
As discussed in the previous section, the binary IFHMM

tends to overestimate the number of devices, sometimes
growing above what our code can handle, specially when
computing the accuracy. As a consequence, we do not
report the results with the binary IFHMM, as it would lead
to similar conclusions than in the previous section.

Fig. 6. Histogram of Q under the IFUHMM.Fig. 5. Small scale experiment. Histograms of (a) Mþ and (b) Q under
the IFUHMM.

Fig. 7. Histogram ofMþ under the IFUHMM.

TABLE 2
REDD Database

H1 H2 H3 H4 H5

FHMM (M ¼ 6, Q ¼ 4) 0:54
 0:05 0:67
 0:04 0:57
 0:06 0:45
 0:05 0:47
 0:04
Var-Q4 0:53
 0:04 0:60
 0:05 0:49
 0:06 0:43
 0:03 0:50
 0:05
IFHMM-Q4 0:57
 0:06 0:75
 0:02 0:53
 0:08 0:46
 0:07 0:57
 0:08
IFUHMM 0:64
 0:06 0:77
 0:03 0:58
 0:07 0:55
 0:07 0:61
 0:09

Mean accuracy broken down by house.
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Fig. 6 shows the histograms of the inferred number of
states obtained with the IFUHMM. This figure shows that
the required number of states in both databases is between
three and five. This is why we set the number of states for
the FHMM and the IFHMM to four, which in turn is a typi-
cal value of the number of states considered in the literature
[33]. We also show in Fig. 7 the histograms of the inferred
number of chains obtained under the IFUHMM.

Tables 2 and 3 show the mean and standard deviation of
the accuracy provided by the four approaches . We observe
that the IFUHMM presents the largest accuracy for both
databases and for all days and houses. The FHMM is as
good as the IFUHMM for house 3 of the REDD database,
while for house 2 the IFHMM-Q4 provides a similar accu-
racy to the IFUHMM. If we now compare the two inference
algorithms, the blocked sampler (IFHMM-Q4) and the vari-
ational algorithm (Var-Q4), we can observe that the
IFHMM-Q4 presents in general better accuracy. Hence,
although the variational algorithm runs faster than the
blocked sampler, it provides less accurate results, in accor-
dance with typical results the literature.

Finally, we depict in Figs. 8 and 9 the true percentage of
total power consumed by each device, compared to the
inferred percentages by each approach, for both the REDD
and AMP databases. Note that assuming a fixed number of
chains can be harmful if some of the devices are not
switched on at least once during the observation period
(see, e.g., the second day of the AMP database in Fig. 9b). If
we now compare these figures to the histograms of the
inferred number of chains in Fig. 7, we can observe that the
IFUHMM always captures the most consuming devices
(see, e.g., house 1 in Fig. 7a, which shows that the IFUHMM
captures in more than 50 percent of the cases the true num-
ber of devices in Fig. 8a, where each device consumes more
than 10 percent of the total power). However, when dealing
with less consuming devices (see, e.g., the washer-dryer ‘W’
of house 2 in Fig. 8b), it tends to underestimate the number
of devices, assigning the power of these less consuming
devices to other more consuming devices.

From these results, we can conclude that the IFUHMM
performs much better because it can adapt the number of
states and chains to fit the data. For different houses or days
it may choose different number of components, while the
other methods stick to a value that might not be the best in
some cases. Using a nonparametric prior allows for the flex-
ibility enough to change the number of components for
each scenario, providing a significant improvement over
fixed models, even when they use the ground truth for the
number of devices or a typical number of states.

To sum up, our IFUHMM properly detects the active
devices in the time series, and indicates that, in general, three

or four states are enough to describe the behavior of the elec-
trical devices. The IFUHMM does not make use of specific
prior information to model each individual device but, even
so, it is able to recover the number of devices and their
powers draws accurately, providing a good estimation of the
percentage of the total power that each device consumes.

TABLE 3
AMP Database

Day 1 Day 2

FHMM (M ¼ 8, Q ¼ 4) 0:36
 0:05 0:37
 0:05
Var-Q4 0:48
 0:06 0:51
 0:06
IFHMM-Q4 0:58
 0:11 0:58
 0:07
IFUHMM 0:69
 0:10 0:67
 0:11

Mean accuracy broken down by day.

Fig. 8. REDD database. Percentage of total power consumed by each
device.
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7 CONCLUSIONS AND FUTURE WORK

We have extended the existent binary IFHMM [18] to allow
for any number of states in the Markov chains and devel-
oped two MCMC-based algorithms and a variational infer-
ence algorithm for this model. Additionally, by placing an
infinite discrete prior distribution over the number of states,
we have derived an inference algorithm that learns both the
number of parallel chains and the number of hidden states
in a FHMM. This algorithm resembles the RJMCMC techni-
ques for HMMs but, since all the dimension-changing varia-
bles can be integrated out under our model, we resort
instead to a standard Metropolis-Hastings algorithm. There-
fore, our algorithm effectively deals with the trade-off prob-
lem between the number of chains and the number of
states, avoiding the model selection, and can be useful to
find the Markov structure in the data and to explain the
latent causes of the observations in a meaningful way.

In order to show the proper performance of the proposed
algorithms, we have focused on solving the power disaggre-
gation problem on two real datasets. In these experiments,
we have found that the number of devices in the power dis-
aggregation problem, as well as their parameters, can be
inferred in a fully blind manner. We have also obtained that
inferring the number of chains and states in the FHMM,
instead of fixing them a priori, improves performance.
Hence, the proposed IFUHMM appears as a more generally
applicable model than the existing binary IFHMM [18] to
find the hidden canonical causes in a time series.

One of the limitations of the proposed approach, when
used over a significant proportion of the power grid of any
city, is to find the correspondence of each estimated chain
with a specific device, as the model is blind and we do not
have individual information for each house. There are two

complementary ways around it. First, we can use statistical
properties from the inferred chains: if a chain is active for
minutes or hours consuming a significant amount of power,
we could believe it represents the lighting in that house; if a
chain is only active for a few minutes consuming much
power, we can think of it as a microwave; if it were on all
day long with a periodic power signal it would be the
fridge; and if it were only used for around an hour a few
days per week, it might be the washing machine. Second,
we can also augment our model by considering a hierarchy,
in which the chains are shared across the houses, but their
activation is individually computed for each house. In this
way, we only need to infer some representative devices that
are shared among several houses.
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