
Reparameterizing Challenging Distributions

Francisco J. R. Ruiz

Joint work with Christian Naesseth, Scott Linderman, Michalis Titsias, David Blei

November 22nd, 2016

1 / 30



Overview

I Reparameterization allows for low-variance gradient estimators

I But it is available for some distributions only

I We show how to extend reparameterization to other distributions

I Allows 1-sample Monte Carlo estimation of gradient

I Our goal: General variational inference for probabilistic models
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Gradient of Expectations

I Consider the gradient

∇λEq(z;λ) [f (z,λ)]

w.r.t. some parameters λ

I This is common in statistics/machine learning:

λ? = arg max
λ

Eq(z;λ) [f (z,λ)]

I Optimization of loss functions
I Reinforcement learning (policy gradient)
I Variational inference
I . . .
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Variational Inference (1/3)

λ? = arg max
λ

Eq(z;λ) [f (z,λ)]

I z: Latent variables in a probabilistic model

I x: Data

I p(x, z): Probabilistic model

I q(z;λ): Variational distribution

f (z,λ) = log p(x, z)− log q(z;λ)
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Variational Inference (2/3)

λ? = arg max
λ

Eq(z;λ) [log p(x, z)− log q(z;λ)]

I Variational inference approximates the posterior

I Minimizes the KL divergence between q(z;λ) and the posterior

λ? = arg min
λ

DKL(q(z;λ)||p(z | x))
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Variational Inference (3/3)

I Optimization problem:

λ? = arg max
λ

Eq(z;λ) [log p(x, z)− log q(z;λ)]

I Conditionally conjugate models: coordinate ascent
I Non-conjugate models: score function method, reparameterization

I Score function and reparameterization are two ways to estimate

∇λEq(z;λ) [f (z,λ)]

I For simplicity, we focus on

f (z) = log p(x, z)

(assume that the gradient of the entropy is tractable)
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Score Function Method1

I Monte Carlo estimator of the gradient

∇λEq(z;λ) [f (z)]

I Score function method:

∇λEq(z;λ) [f (z)] = Eq(z;λ) [f (z)∇λ log q(z;λ)]

I Stochastic optimization

I Algorithm:

1. Sample z(s) iid∼ q(z;λ)
2. Evaluate f (z(s)) and ∇λ log q(z(s);λ) for each sample s
3. Obtain a Monte Carlo estimate of the gradient
4. Take a gradient step for λ

1Paisley et al. (2012), Ranganath et al. (2014), Mnih and Gregor (2014)
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Reparameterization Trick2 (1/2)

I Define an invertible transformation

z = T (ε;λ), ε = T −1(z;λ)

such that π(ε) does not depend on λ.

I Push the gradient inside the expectation

∇λEq(z;λ) [f (z)] = Eπ(ε)

[
∇zf (z)

∣∣
z=T (ε;λ)

∇λT (ε;λ)
]

I Algorithm:

1. Sample ε(s) iid from π(ε)
2. Obtain z(s) = T (ε(s);λ)
3. Evaluate ∇zf (z) and ∇λT (ε;λ) for each sample s
4. Obtain a Monte Carlo estimate of the gradient
5. Take a gradient step for λ

2Salimans and Knowles (2013), Kingma and Welling (2014), Rezende et al. (2014),
Titsias & Lázaro-Gredilla (2014)
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Reparameterization Trick (2/2)

I Simple example: q(z;λ) is a Gaussian

ε = T −1(z;λ) = Σ−1/2(z− µ)

The transformed density is π(ε) = N (0, 1) (independent of µ, Σ)

I Used in ADVI3

I Non-linear transformation
I Gaussian distribution on the transformed space
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Posterior
ADVI

3Kucukelbir et al. (2015, 2016)
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Comparison

I Score function

+ Any probabilistic model
+ Any variational distribution (as long as we can sample)
− High variance: Requires additional tricks and many samples

I Reparameterization

− Differentiable probabilistic models (continuous z)4

− Limited to some distributions (location-scale, inverse CDF)
+ Low variance: Only 1 sample suffices in practice

I Our contribution
I Extend reparameterization to other distributions

4But see Maddison et al. (2016), Jang et al. (2016), Kusner & Hernández-Lobato
(2016)
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Motivation

I We may need more expressive variational families q(z;λ)
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Contributions

The Generalized Reparameterization Gradient

Francisco J. R. Ruiz
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Abstract

The reparameterization gradient has become a widely used method to obtain
Monte Carlo gradients to optimize the variational objective. However, this tech-
nique does not easily apply to commonly used distributions such as beta or gamma
without further approximations, and most practical applications of the reparame-
terization gradient fit Gaussian distributions. In this paper, we introduce the gen-
eralized reparameterization gradient, a method that extends the reparameteriza-
tion gradient to a wider class of variational distributions. Generalized reparam-
eterizations use invertible transformations of the latent variables which lead to
transformed distributions that weakly depend on the variational parameters. This
results in new Monte Carlo gradients that combine reparameterization gradients
and score function gradients. We demonstrate our approach on variational infer-
ence for two complex probabilistic models. The generalized reparameterization
is effective: even a single sample from the variational distribution is enough to
obtain a low-variance gradient.

1 Introduction

Variational inference (VI) is a technique for approximating the posterior distribution in probabilistic
models (Jordan et al., 1999; Wainwright and Jordan, 2008). Given a probabilistic model p(x, z) of
observed variables x and hidden variables z, the goal of VI is to approximate the posterior p(z |x),
which is intractable to compute exactly for many models. The idea of VI is to posit a family of
distributions over the latent variables q(z;v) with free variational parameters v. VI then fits those
parameters to find the member of the family that is closest in Kullback-Leibler (KL) divergence
to the exact posterior, v⇤ = arg minv KL(q(z;v)||p(z |x)). This turns inference into optimization,
and different ways of doing VI amount to different optimization algorithms for solving this problem.

For a certain class of probabilistic models, those where each conditional distribution is in an ex-
ponential family, we can easily use coordinate ascent optimization to minimize the KL diver-
gence (Ghahramani and Beal, 2001). However, many important models do not fall into this class
(e.g., probabilistic neural networks or Bayesian generalized linear models). This is the scenario
that we focus on in this paper. Much recent research in VI has focused on these difficult settings,
seeking effective optimization algorithms that can be used with any model. This has enabled the
application of VI on nonconjugate probabilistic models (Carbonetto et al., 2009; Paisley et al., 2012;
Ranganath et al., 2014; Titsias and Lázaro-Gredilla, 2014), deep neural networks (Neal, 1992; Hin-
ton et al., 1995; Mnih and Gregor, 2014; Kingma and Welling, 2014), and probabilistic programming
(Wingate and Weber, 2013; Kucukelbir et al., 2015; van de Meent et al., 2016).

One strategy for VI in nonconjugate models is to obtain Monte Carlo estimates of the gradient of the
variational objective and to use stochastic optimization to fit the variational parameters. Within this
strategy, there have been two main lines of research: black-box variational inference (BBVI) (Ran-
ganath et al., 2014) and reparameterization gradients (Salimans and Knowles, 2013; Kingma and
Welling, 2014). Each enjoys different advantages and limitations.

BBVI expresses the gradient of the variational objective as an expectation with respect to the varia-
tional distribution using the log-derivative trick, also called REINFORCE or score function method
(Glynn, 1990; Williams, 1992). It then takes samples from the variational distribution to calcu-

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.
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Rejection Sampling Variational Inference

Christian A. Naesseth?†‡ Francisco J. R. Ruiz‡§ Scott W. Linderman‡ David M. Blei‡
†Linköping University ‡Columbia University §University of Cambridge

Abstract

Variational inference using the reparameteri-
zation trick has enabled large-scale approx-
imate Bayesian inference in complex prob-
abilistic models, leveraging stochastic opti-
mization to sidestep intractable expectations.
The reparameterization trick is applicable
when we can simulate a random variable by
applying a (di↵erentiable) deterministic func-
tion on an auxiliary random variable whose
distribution is fixed. For many distributions
of interest (such as the gamma or Dirichlet),
simulation of random variables relies on rejec-
tion sampling. The discontinuity introduced
by the accept–reject step means that stan-
dard reparameterization tricks are not ap-
plicable. We propose a new method that
lets us leverage reparameterization gradients
even when variables are outputs of a rejec-
tion sampling algorithm. Our approach en-
ables reparameterization on a larger class of
variational distributions. In several studies
of real and synthetic data, we show that the
variance of the estimator of the gradient is
significantly lower than other state-of-the-art
methods. This leads to faster convergence of
stochastic optimization variational inference.

1 Introduction

Variational inference [Hinton and van Camp, 1993,
Waterhouse et al., 1996, Jordan et al., 1999] under-
lies many recent advances in large scale probabilistic
modeling. It has enabled sophisticated modeling of
complex domains such as images [Kingma and Welling,
2014] and text [Ho↵man et al., 2013]. By definition,
the success of variational approaches depends on our

?Corresponding author.

ability to (i) formulate a flexible parametric family
of distributions; and (ii) optimize the parameters to
find the member of this family that most closely ap-
proximates the true posterior. These two criteria are
at odds—the more flexible the family, the more chal-
lenging the optimization problem. In this paper, we
present a novel method that enables more e�cient op-
timization for a large class of variational distributions,
namely, for distributions that we can e�ciently simu-
late by rejection sampling.

For complex models, the variational parameters can
be optimized by stochastic gradient ascent on the ev-
idence lower bound (elbo), a lower bound on the
marginal likelihood of the data. There are two pri-
mary means of estimating the gradient of the elbo:
the score function estimator [Paisley et al., 2012, Ran-
ganath et al., 2014, Mnih and Gregor, 2014] and the
reparameterization trick [Kingma and Welling, 2014,
Rezende et al., 2014, Price, 1958, Bonnet, 1964], both
of which rely on Monte Carlo sampling. While the
reparameterization trick often yields lower variance
estimates and therefore leads to more e�cient opti-
mization, this approach has been limited in scope to a
few variational families (typically Gaussians). Indeed,
some lines of research have already tried to address
this limitation [Knowles, 2015, Ruiz et al., 2016].

There are two requirements to apply the reparameter-
ization trick. The first is that the random variable can
be obtained through a transformation of a simple ran-
dom variable, such as a uniform or standard normal;
the second is that the transformation be di↵erentiable.
In this paper, we observe that all random variables we
simulate on our computers are ultimately transforma-
tions of uniforms, many of which are based on rejection
sampling. So if these transformations are di↵erentiable
then we can use these existing algorithms to expand
the scope of the reparameterization trick.

Thus we show how to use existing rejection samplers
to develop stochastic gradients of variational param-
eters. In short, each rejection sampler uses a highly-
tuned transformation that is well-suited for its distri-
bution. We can construct new reparameterization gra-
dients by “removing the lid” from these black boxes,
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The Generalized Reparameterization Gradient (1/3)

I Define an invertible transformation

z = T (ε;λ), ε = T −1(z;λ)

but allow π(ε;λ) to depend weakly on λ.

I Gradient:
∇λEq(z;λ) [f (z)] = grep + gcorr
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The Generalized Reparameterization Gradient (2/3)

∇λEq(z;λ) [f (z)] = grep + gcorr

I grep: Reparameterization gradient

grep = Eπ(ε;λ)

[
∇zf (z)

∣∣
z=T (ε;λ)

∇λT (ε;λ)
]

I gcorr: Correction term

gcorr = Eπ(ε;λ) [f (T (ε;λ))∇λ log π(ε;λ)]

14 / 30



The Generalized Reparameterization Gradient (3/3)

∇λEq(z;λ) [f (z)] = grep + gcorr

grep = Eπ(ε;λ)

[
∇zf (z)

∣∣
z=T (ε;λ)

∇λT (ε;λ)
]

gcorr = Eπ(ε;λ) [f (T (ε;λ))∇λ log π(ε;λ)]

I Under a transformation such that π(ε;λ) does not depend on λ:

grep = reparameterization gradient

gcorr = 0

I Under identity transformation:

grep = 0

gcorr = score function gradient

Goal: Find a transformation that makes gcorr small
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Example: Gamma distribution

I We use transformations based on standardization

I Example: q(z ;α, β) = Gamma(z ;α, β)

ε = T −1(z ;α, β) =
log(z)− (ψ(α)− log(β))√

ψ1(α)
,
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G-REP: Full Algorithm

1. Draw a single sample z ∼ q(z;λ)

2. Obtain ε = T −1(z;λ)

3. Estimate grep and gcorr (with 1 sample)

4. Take a gradient step for λ

17 / 30



Results: MNIST

Model: Gamma-beta matrix factorization
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Results: Olivetti Dataset

Model: Sparse gamma deep exponential family5

Ground truth Reconstructed (ADVI) Reconstructed (G-REP)

5Ranganath et al. (2015)
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Rejection Sampling Variational Inference

Every random variable that we can simulate on our computers is
ultimately a transformation of elementary random variables

I In theory, this should allow for reparameterization of any distribution

I Challenge: rejection sampling steps
I We cannot push the gradient inside the integral
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Reparameterized Rejection Sampling

I In standard rejection sampling, we have:
I A target, q(z ;λ)
I A proposal, r(z ;λ)
I A uniform random variable, u ∼ U(0, 1)
I An accept/reject step, u < q(z;λ)

Mλr(z;λ)

I In reparameterized rejection sampling, we have:
I A target, q(z ;λ)
I An elementary proposal, s(ε)
I A transformation, z = T (ε;λ), such that z ∼ r(z ;λ)
I A uniform random variable, u ∼ U(0, 1)
I An accept/reject step, u < q(T (ε;λ);λ)

Mλr(T (ε;λ);λ)

The accepted sample z = T (ε;λ) ∼ q(z ;λ)
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Rejection Sampling VI

Main idea:

I Integrate out the accept/reject variables u

I Consider the distribution of the accepted sample ε

π(ε;λ) = s(ε)
q(T (ε;λ);λ)

r(T (ε;λ);λ)

I Use the transformation z = T (ε;λ)

22 / 30



Example: Gamma Distribution (1/2)

Algorithm6 to sample from a Gamma(α, 1) (with α ≥ 1)

1. Generate ε ∼ s(ε) = N (0, 1)

2. Transform as z = T (ε;α) =
(
α− 1

3

) (
1 + ε√

9α−3

)3

3. Generate u ∼ U(0, 1)

4. Accept or reject ε

4.1 If accept, return z and ε
4.2 If reject, go to Step 1 and repeat

6Marsaglia & Tsang (2000)
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Example: Gamma Distribution (2/2)

The transformation has very high acceptance probability (> 0.95 for α = 1)
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We can leverage 60+ years of research in rejection sampling
to find good transformations!
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Gradient of Rejection Sampling VI

I The form of the gradient is similar to G-REP:

∇λEq(z;λ) [f (z)] = grep + gcorr

grep = Eπ(ε;λ)

[
∇zf (z)

∣∣
z=T (ε;λ)

∇λT (ε;λ)
]

gcorr = Eπ(ε;λ) [f (T (ε;λ))∇λ log π(ε;λ)]

25 / 30



RSVI: Full Algorithm

1. Run the reparameterized rejection sampling to draw ε ∼ π(ε;λ)

2. Transform z = T (ε;λ)

3. Estimate grep and gcorr (with 1 sample)

4. Take a gradient step for λ

26 / 30



Results: Variance of the Gradient

Model: Dirichlet/Multinomial with 100 components
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Results: Olivetti Dataset

Model: Sparse gamma deep exponential family7
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7Ranganath et al. (2015)
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Summary: G-REP and RSVI

I Extend reparameterization trick to non-reparameterizable
distributions (gamma, beta, Dirichlet, . . .)

I Allow variational inference on continuous non-conjugate models

I Fast: Monte Carlo estimation with only 1 sample
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Thank you for your attention!
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