Reparameterizing Challenging Distributions

Francisco J. R. Ruiz

Joint work with Christian Naesseth, Scott Linderman, Michalis Titsias, David Blei

November 22nd, 2016

Overview

- Reparameterization allows for low-variance gradient estimators
- But it is available for some distributions only
- We show how to extend reparameterization to other distributions
- Allows 1-sample Monte Carlo estimation of gradient
- > Our goal: General variational inference for probabilistic models

Gradient of Expectations

Consider the gradient

 $\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\mathbf{z};\boldsymbol{\lambda})}[f(\mathbf{z},\boldsymbol{\lambda})]$

w.r.t. some parameters λ

Gradient of Expectations

Consider the gradient

$$abla_{\lambda} \mathbb{E}_{q(\mathbf{z}; \boldsymbol{\lambda})} \left[f(\mathbf{z}, \boldsymbol{\lambda}) \right]$$

w.r.t. some parameters λ

▶ This is common in statistics/machine learning:

$$oldsymbol{\lambda}^{\star} = rg\max_{oldsymbol{\lambda}} \mathbb{E}_{q(\mathbf{z};oldsymbol{\lambda})}\left[f(\mathbf{z},oldsymbol{\lambda})
ight]$$

- Optimization of loss functions
- Reinforcement learning (policy gradient)
- Variational inference
- ▶ ...

Variational Inference (1/3)

$$egin{aligned} oldsymbol{\lambda}^{\star} &= rg\max_{oldsymbol{\lambda}} \mathbb{E}_{q(\mathbf{z};oldsymbol{\lambda})}\left[f(\mathbf{z},oldsymbol{\lambda})
ight] \end{aligned}$$

- > z: Latent variables in a probabilistic model
- 🕨 🗴: Data
- ▶ *p*(**x**, **z**): Probabilistic model
- $q(\mathbf{z}; \boldsymbol{\lambda})$: Variational distribution

$$f(\mathsf{z}, \boldsymbol{\lambda}) = \log p(\mathsf{x}, \mathsf{z}) - \log q(\mathsf{z}; \boldsymbol{\lambda})$$

Variational Inference (2/3)

$$\lambda^{\star} = rg\max_{\lambda} \mathbb{E}_{q(\mathsf{z}; \lambda)} \left[\log p(\mathsf{x}, \mathsf{z}) - \log q(\mathsf{z}; \lambda)
ight]$$

- Variational inference approximates the posterior
- Minimizes the KL divergence between $q(\mathbf{z}; \boldsymbol{\lambda})$ and the posterior

$$oldsymbol{\lambda}^{\star} = rgmin_{oldsymbol{\lambda}} D_{ ext{KL}}(q(\mathbf{z}; oldsymbol{\lambda}) || p(\mathbf{z} \,|\, \mathbf{x}))$$

Variational Inference (3/3)

Optimization problem:

$$\lambda^{\star} = rg\max_{oldsymbol{\lambda}} \mathbb{E}_{q(\mathsf{z};oldsymbol{\lambda})} \left[\log p(\mathsf{x},\mathsf{z}) - \log q(\mathsf{z};oldsymbol{\lambda})
ight]$$

- Conditionally conjugate models: coordinate ascent
- Non-conjugate models: score function method, reparameterization

Variational Inference (3/3)

Optimization problem:

$$\lambda^{\star} = rg\max_{oldsymbol{\lambda}} \mathbb{E}_{q(\mathbf{z};oldsymbol{\lambda})} \left[\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; oldsymbol{\lambda})
ight]$$

- Conditionally conjugate models: coordinate ascent
- Non-conjugate models: score function method, reparameterization
- Score function and reparameterization are two ways to estimate

 $\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\mathbf{z};\boldsymbol{\lambda})} [f(\mathbf{z},\boldsymbol{\lambda})]$

For simplicity, we focus on

$$f(\mathbf{z}) = \log p(\mathbf{x}, \mathbf{z})$$

(assume that the gradient of the entropy is tractable)

Score Function Method¹

Monte Carlo estimator of the gradient

 $abla_{\lambda} \mathbb{E}_{q(\mathbf{z}; \lambda)} [f(\mathbf{z})]$

Score function method:

$$abla_{oldsymbol{\lambda}} \mathbb{E}_{q(\mathsf{z};oldsymbol{\lambda})} \left[f(\mathsf{z})
ight] = \mathbb{E}_{q(\mathsf{z};oldsymbol{\lambda})} \left[f(\mathsf{z})
abla_{oldsymbol{\lambda}} \log q(\mathsf{z};oldsymbol{\lambda})
ight]$$

Stochastic optimization

¹Paisley et al. (2012), Ranganath et al. (2014), Mnih and Gregor (2014)

Score Function Method¹

Monte Carlo estimator of the gradient

 $\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\mathbf{z};\boldsymbol{\lambda})}[f(\mathbf{z})]$

Score function method:

$$abla_{oldsymbol{\lambda}} \mathbb{E}_{q(\mathsf{z};oldsymbol{\lambda})} \left[f(\mathsf{z})
ight] = \mathbb{E}_{q(\mathsf{z};oldsymbol{\lambda})} \left[f(\mathsf{z})
abla_{oldsymbol{\lambda}} \log q(\mathsf{z};oldsymbol{\lambda})
ight]$$

- Stochastic optimization
- Algorithm:
 - 1. Sample $\mathbf{z}^{(s)} \stackrel{\text{iid}}{\sim} q(\mathbf{z}; \boldsymbol{\lambda})$
 - 2. Evaluate $f(\mathbf{z}^{(s)})$ and $\nabla_{\boldsymbol{\lambda}} \log q(\mathbf{z}^{(s)}; \boldsymbol{\lambda})$ for each sample s
 - 3. Obtain a Monte Carlo estimate of the gradient
 - 4. Take a gradient step for λ

¹Paisley et al. (2012), Ranganath et al. (2014), Mnih and Gregor (2014)

Reparameterization Trick² (1/2)

Define an invertible transformation

$$\mathbf{z} = \mathcal{T}(\boldsymbol{\epsilon}; \boldsymbol{\lambda}), \qquad \boldsymbol{\epsilon} = \mathcal{T}^{-1}(\mathbf{z}; \boldsymbol{\lambda})$$

such that $\pi(\epsilon)$ does not depend on λ .

²Salimans and Knowles (2013), Kingma and Welling (2014), Rezende et al. (2014), Titsias & Lázaro-Gredilla (2014)

Reparameterization Trick² (1/2)

Define an invertible transformation

$$\mathbf{z} = \mathcal{T}(\boldsymbol{\epsilon}; \boldsymbol{\lambda}), \qquad \boldsymbol{\epsilon} = \mathcal{T}^{-1}(\mathbf{z}; \boldsymbol{\lambda})$$

such that $\pi(\epsilon)$ does not depend on λ .

Push the gradient inside the expectation

$$\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\boldsymbol{z};\boldsymbol{\lambda})} \left[f(\boldsymbol{z}) \right] = \mathbb{E}_{\pi(\boldsymbol{\epsilon})} \left[\nabla_{\boldsymbol{z}} f(\boldsymbol{z}) \Big|_{\boldsymbol{z} = \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda}) \right]$$

²Salimans and Knowles (2013), Kingma and Welling (2014), Rezende et al. (2014), Titsias & Lázaro-Gredilla (2014)

Reparameterization Trick² (1/2)

Define an invertible transformation

$$\mathbf{z} = \mathcal{T}(\boldsymbol{\epsilon}; \boldsymbol{\lambda}), \qquad \boldsymbol{\epsilon} = \mathcal{T}^{-1}(\mathbf{z}; \boldsymbol{\lambda})$$

such that $\pi(\epsilon)$ does not depend on λ .

Push the gradient inside the expectation

$$\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\boldsymbol{z};\boldsymbol{\lambda})} \left[f(\boldsymbol{z}) \right] = \mathbb{E}_{\pi(\boldsymbol{\epsilon})} \left[\nabla_{\boldsymbol{z}} f(\boldsymbol{z}) \Big|_{\boldsymbol{z} = \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda}) \right]$$

Algorithm:

- 1. Sample $\epsilon^{(s)}$ iid from $\pi(\epsilon)$
- 2. Obtain $\mathbf{z}^{(s)} = \mathcal{T}(\boldsymbol{\epsilon}^{(s)}; \boldsymbol{\lambda})$
- 3. Evaluate $\nabla_{\mathbf{z}} f(\mathbf{z})$ and $\nabla_{\boldsymbol{\lambda}} \mathcal{T}(\boldsymbol{\epsilon}; \boldsymbol{\lambda})$ for each sample s
- 4. Obtain a Monte Carlo estimate of the gradient
- 5. Take a gradient step for λ

²Salimans and Knowles (2013), Kingma and Welling (2014), Rezende et al. (2014), Titsias & Lázaro-Gredilla (2014)

Reparameterization Trick (2/2)

• Simple example: $q(\mathbf{z}; \boldsymbol{\lambda})$ is a Gaussian

$$oldsymbol{\epsilon} = \mathcal{T}^{-1}(\mathsf{z};oldsymbol{\lambda}) = \mathbf{\Sigma}^{-1/2}(\mathsf{z}-oldsymbol{\mu})$$

The transformed density is $\pi(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{1})$ (independent of μ , Σ)

³Kucukelbir et al. (2015, 2016)

Reparameterization Trick (2/2)

• Simple example: $q(\mathbf{z}; \boldsymbol{\lambda})$ is a Gaussian

$$\epsilon = \mathcal{T}^{-1}(\mathsf{z}; oldsymbol{\lambda}) = \mathbf{\Sigma}^{-1/2}(\mathsf{z}-oldsymbol{\mu})$$

The transformed density is $\pi(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{1})$ (independent of μ , Σ) \blacktriangleright Used in ADVI³

- Non-linear transformation
- Gaussian distribution on the transformed space

³Kucukelbir et al. (2015, 2016)

Comparison

Score function

- + Any probabilistic model
- + Any variational distribution (as long as we can sample)
- High variance: Requires additional tricks and many samples
- Reparameterization
 - Differentiable probabilistic models (continuous z)⁴
 - Limited to some distributions (location-scale, inverse CDF)
 - + Low variance: Only 1 sample suffices in practice

 $^{^{4}\}mbox{But}$ see Maddison et al. (2016), Jang et al. (2016), Kusner & Hernández-Lobato (2016)

Comparison

Score function

- + Any probabilistic model
- + Any variational distribution (as long as we can sample)
- High variance: Requires additional tricks and many samples
- Reparameterization
 - Differentiable probabilistic models (continuous z)⁴
 - Limited to some distributions (location-scale, inverse CDF)
 - + Low variance: Only 1 sample suffices in practice
- Our contribution
 - Extend reparameterization to other distributions

⁴But see Maddison et al. (2016), Jang et al. (2016), Kusner & Hernández-Lobato (2016)

Motivation

• We may need more expressive variational families $q(\mathbf{z}; \boldsymbol{\lambda})$

Contributions

The Generalized Reparameterization Gradient

Francisco J. R. Ruiz University of Cambridge Columbia University Michalis K. Titsias Athens University of Economics and Business David M. Blei Columbia University

Rejection Sampling Variational Inference

Christian A. Naesseth^{*†‡} Francisco J. R. Ruiz^{‡§} Scott W. Linderman[‡] David M. Blei[‡] [†]Linköping University [‡]Columbia University [§]University of Cambridge

The Generalized Reparameterization Gradient (1/3)

Define an invertible transformation

$$\mathbf{z} = \mathcal{T}(oldsymbol{\epsilon};oldsymbol{\lambda}), \qquad oldsymbol{\epsilon} = \mathcal{T}^{-1}(\mathbf{z};oldsymbol{\lambda})$$

but allow $\pi(\epsilon; \lambda)$ to depend weakly on λ .

Gradient:

$$abla_{oldsymbol{\lambda}} \mathbb{E}_{q(\mathsf{z};oldsymbol{\lambda})} \left[f(\mathsf{z})
ight] = \mathbf{g}^{ ext{rep}} + \mathbf{g}^{ ext{corr}}$$

The Generalized Reparameterization Gradient (2/3)

$$abla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\boldsymbol{\mathsf{z}}; \boldsymbol{\lambda})} \left[f(\boldsymbol{\mathsf{z}}) \right] = \boldsymbol{\mathsf{g}}^{\mathrm{rep}} + \boldsymbol{\mathsf{g}}^{\mathrm{corr}}$$

 $\blacktriangleright~g^{\rm rep}$: Reparameterization gradient

$$\mathbf{g}^{\mathrm{rep}} = \mathbb{E}_{\pi(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \left[\nabla_{\mathbf{z}} f(\mathbf{z}) \big|_{\mathbf{z} = \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda}) \right]$$

▶ **g**^{corr}: Correction term

$$\mathbf{g}^{ ext{corr}} = \mathbb{E}_{\pi(oldsymbol{\epsilon};oldsymbol{\lambda})} \left[f(\mathcal{T}(oldsymbol{\epsilon};oldsymbol{\lambda}))
abla_{oldsymbol{\lambda}} \log \pi(oldsymbol{\epsilon};oldsymbol{\lambda})
ight]$$

The Generalized Reparameterization Gradient (3/3)

$$\begin{aligned} \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\boldsymbol{z};\boldsymbol{\lambda})} \left[f(\boldsymbol{z}) \right] &= \boldsymbol{g}^{\text{rep}} + \boldsymbol{g}^{\text{corr}} \\ \boldsymbol{g}^{\text{rep}} &= \mathbb{E}_{\pi(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \left[\nabla_{\boldsymbol{z}} f(\boldsymbol{z}) \big|_{\boldsymbol{z} = \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda}) \right] \\ \boldsymbol{g}^{\text{corr}} &= \mathbb{E}_{\pi(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \left[f(\mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})) \nabla_{\boldsymbol{\lambda}} \log \pi(\boldsymbol{\epsilon};\boldsymbol{\lambda}) \right] \end{aligned}$$

• Under a transformation such that $\pi(\epsilon; \lambda)$ does not depend on λ :

$$\label{eq:green} \begin{split} & \mathbf{g}^{\mathrm{rep}} = \mathrm{reparameterization \ gradient} \\ & \mathbf{g}^{\mathrm{corr}} = \mathbf{0} \end{split}$$

Under identity transformation:

$$\label{eq:grep} \begin{split} &g^{\rm rep} = 0 \\ &g^{\rm corr} = {\rm score\ function\ gradient} \end{split}$$

The Generalized Reparameterization Gradient (3/3)

$$\begin{aligned} \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\boldsymbol{z};\boldsymbol{\lambda})} \left[f(\boldsymbol{z}) \right] &= \boldsymbol{g}^{\text{rep}} + \boldsymbol{g}^{\text{corr}} \\ \boldsymbol{g}^{\text{rep}} &= \mathbb{E}_{\pi(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \left[\nabla_{\boldsymbol{z}} f(\boldsymbol{z}) \big|_{\boldsymbol{z} = \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda}) \right] \\ \boldsymbol{g}^{\text{corr}} &= \mathbb{E}_{\pi(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \left[f(\mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})) \nabla_{\boldsymbol{\lambda}} \log \pi(\boldsymbol{\epsilon};\boldsymbol{\lambda}) \right] \end{aligned}$$

• Under a transformation such that $\pi(\epsilon; \lambda)$ does not depend on λ :

$$\label{eq:green} \begin{split} \boldsymbol{g}^{\mathrm{rep}} &= \mathrm{reparameterization\ gradient} \\ \boldsymbol{g}^{\mathrm{corr}} &= \boldsymbol{0} \end{split}$$

Under identity transformation:

$$\label{eq:grep} \begin{split} &g^{\rm rep} = 0 \\ &g^{\rm corr} = {\rm score\ function\ gradient} \end{split}$$

Goal: Find a transformation that makes $\mathbf{g}^{\mathrm{corr}}$ small

Example: Gamma distribution

▶ We use transformations based on *standardization*

• Example:
$$q(z; \alpha, \beta) = \text{Gamma}(z; \alpha, \beta)$$

$$\epsilon = \mathcal{T}^{-1}(z; \alpha, \beta) = \frac{\log(z) - (\psi(\alpha) - \log(\beta))}{\sqrt{\psi_1(\alpha)}},$$

Example: Gamma distribution

▶ We use transformations based on *standardization*

• Example: $q(z; \alpha, \beta) = \text{Gamma}(z; \alpha, \beta)$

$$\epsilon = \mathcal{T}^{-1}(z; \alpha, \beta) = \frac{\log(z) - (\psi(\alpha) - \log(\beta))}{\sqrt{\psi_1(\alpha)}},$$

G-REP: Full Algorithm

- 1. Draw a single sample $\mathbf{z} \sim q(\mathbf{z}; \boldsymbol{\lambda})$
- 2. Obtain $\epsilon = \mathcal{T}^{-1}(\mathsf{z}; \lambda)$
- 3. Estimate $\mathbf{g}^{\mathrm{rep}}$ and $\mathbf{g}^{\mathrm{corr}}$ (with 1 sample)
- 4. Take a gradient step for λ

Results: MNIST

Model: Gamma-beta matrix factorization

Results: Olivetti Dataset

Model: Sparse gamma deep exponential family⁵

⁵Ranganath et al. (2015)

Rejection Sampling Variational Inference

Every random variable that we can simulate on our computers is ultimately a transformation of elementary random variables

> In theory, this should allow for reparameterization of any distribution

Rejection Sampling Variational Inference

Every random variable that we can simulate on our computers is ultimately a transformation of elementary random variables

- In theory, this should allow for reparameterization of any distribution
- Challenge: rejection sampling steps
 - We cannot push the gradient inside the integral

Reparameterized Rejection Sampling

In standard rejection sampling, we have:

- A target, $q(z; \lambda)$
- A proposal, r(z; λ)
- A uniform random variable, $u \sim \mathcal{U}(0,1)$
- An accept/reject step, $u < \frac{q(z;\lambda)}{M_{\lambda}r(z;\lambda)}$

Reparameterized Rejection Sampling

In standard rejection sampling, we have:

- A target, $q(z; \lambda)$
- A proposal, r(z; λ)
- A uniform random variable, $u \sim \mathcal{U}(0,1)$
- An accept/reject step, $u < \frac{q(z;\lambda)}{M_{\lambda}r(z;\lambda)}$
- ▶ In *reparameterized* rejection sampling, we have:
 - A target, $q(z; \lambda)$
 - An elementary proposal, $s(\varepsilon)$
 - A transformation, $z = \mathcal{T}(\varepsilon; \lambda)$, such that $z \sim r(z; \lambda)$
 - A uniform random variable, $u \sim \mathcal{U}(0, 1)$
 - An accept/reject step, $u < \frac{q(\mathcal{T}(\varepsilon; \lambda); \lambda)}{M_{\lambda} r(\mathcal{T}(\varepsilon; \lambda); \lambda)}$

The accepted sample $z = \mathcal{T}(arepsilon; oldsymbol{\lambda}) \sim q(z; oldsymbol{\lambda})$

Rejection Sampling VI

Main idea:

- Integrate out the accept/reject variables u
- Consider the distribution of the *accepted* sample ε

$$\pi(\varepsilon; \boldsymbol{\lambda}) = s(\varepsilon) \frac{q(\mathcal{T}(\varepsilon; \boldsymbol{\lambda}); \boldsymbol{\lambda})}{r(\mathcal{T}(\varepsilon; \boldsymbol{\lambda}); \boldsymbol{\lambda})}$$

• Use the transformation $z = \mathcal{T}(\varepsilon; \lambda)$

Example: Gamma Distribution (1/2)

Algorithm⁶ to sample from a $Gamma(\alpha, 1)$ (with $\alpha \geq 1$)

1. Generate $\varepsilon \sim s(\varepsilon) = \mathcal{N}(0, 1)$

2. Transform as
$$z = \mathcal{T}(\varepsilon; \alpha) = \left(\alpha - \frac{1}{3}\right) \left(1 + \frac{\varepsilon}{\sqrt{9\alpha - 3}}\right)^3$$

- 3. Generate $u \sim \mathcal{U}(0, 1)$
- 4. Accept or reject ε

4.1 If accept, return z and ε

 $4.2\,$ If reject, go to Step 1 and repeat

⁶Marsaglia & Tsang (2000)

Example: Gamma Distribution (2/2)

Example: Gamma Distribution (2/2)

We can leverage 60+ years of research in rejection sampling to find good transformations!

Gradient of Rejection Sampling VI

The form of the gradient is similar to G-REP:

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\boldsymbol{z};\boldsymbol{\lambda})}\left[f(\boldsymbol{z})\right] &= \boldsymbol{g}^{\text{rep}} + \boldsymbol{g}^{\text{corr}} \\ \boldsymbol{g}^{\text{rep}} &= \mathbb{E}_{\pi(\boldsymbol{\epsilon};\boldsymbol{\lambda})}\left[\nabla_{\boldsymbol{z}} f(\boldsymbol{z})\big|_{\boldsymbol{z}=\mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} \mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})\right] \\ \boldsymbol{g}^{\text{corr}} &= \mathbb{E}_{\pi(\boldsymbol{\epsilon};\boldsymbol{\lambda})}\left[f(\mathcal{T}(\boldsymbol{\epsilon};\boldsymbol{\lambda})) \nabla_{\boldsymbol{\lambda}} \log \pi(\boldsymbol{\epsilon};\boldsymbol{\lambda})\right] \end{split}$$

RSVI: Full Algorithm

- 1. Run the reparameterized rejection sampling to draw $m{\epsilon} \sim \pi(m{\epsilon};m{\lambda})$
- 2. Transform $\mathbf{z} = \mathcal{T}(\boldsymbol{\epsilon}; \boldsymbol{\lambda})$
- 3. Estimate $\mathbf{g}^{\mathrm{rep}}$ and $\mathbf{g}^{\mathrm{corr}}$ (with 1 sample)
- 4. Take a gradient step for λ

Results: Variance of the Gradient

Model: Dirichlet/Multinomial with 100 components

(B denotes "shape augmentation")

Results: Olivetti Dataset

Model: Sparse gamma deep exponential family⁷

⁷Ranganath et al. (2015)

Summary: G-REP and RSVI

- Extend reparameterization trick to non-reparameterizable distributions (gamma, beta, Dirichlet, ...)
- Allow variational inference on continuous non-conjugate models
- ▶ Fast: Monte Carlo estimation with only 1 sample

Thank you for your attention!

