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Motivation and Goal



Private & ConfidentialDeep Generative Models

[Anonymous, ICLR 2021] [OpenAI]

Variational Auto-Encoder (VAE)    Energy-Based Model (EBM)



Private & ConfidentialFitting Deep Generative Models

● Stochastic gradient descent (SGD) is a powerful tool in 
Machine Learning

● SGD obtains and follows unbiased estimates of the 
log-likelihood gradient

● For some deep generative models, unbiased gradient 
estimates are not directly available



Private & ConfidentialWhy Fitting These Models is Hard

VAE EBM

The model’s likelihood is intractable

Its gradient is intractable

(but it can be written in terms of an expectation)

log-likelihood intractable integral likelihood intractable integral

gradient an expectation gradient an expectation



Private & ConfidentialSummary of Contributions

● An algorithm to obtain unbiased gradient estimates for VAEs

○ Avoid approximation gap of previous approaches (based on 
bounds)

○ Lead to VAEs with better predictive performance

○ Applicable to other deep generative models beyond VAEs

○ Main limitation: increased computational complexity



Private & ConfidentialTechnical Tools

● Two main ideas to develop the unbiased gradient estimates:

○ Augmented latent space (similarly to IWAE)

○ MCMC couplings based on importance sampling



Preliminaries



Private & ConfidentialReview: VAE / IWAE 

● The VAE log-likelihood

● Optimize the ELBO (a lower bound)

● Or optimize the IWAE (a tighter lower bound)

log-likelihood (intractable)

auxiliary random variables

importance weights



Private & ConfidentialBackground: The IWAE as an Augmented Space

● Extended model

● Extended variational distribution

● Its ELBO coincides with the IWAE bound

normalized importance weights



Private & ConfidentialThe Roadmap to Unbiased Estimation

● Both the ELBO and IWAE bounds are biased approximators of 
gradient of the log-likelihood

● If we could sample from the posterior, we could easily form an 
unbiased estimator

(but we cannot sample in practice)

● MCMC couplings provide unbiased estimators by design without 
the need to obtain exact samples from the posterior

gradient expectation



Private & ConfidentialMCMC Couplings

● Consider estimating an expectation of the form

● Typical MCMC approach: sample from a kernel              that targets

generic r.v.
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Private & ConfidentialMCMC Couplings

● Consider estimating an expectation of the form

● Typical MCMC approach: sample from a kernel              that targets

● Coupling MCMC: use two MCMC chains with the same stationary distribution that are coupled

■ There is a joint MCMC kernel

● An unbiased estimator is 

generic r.v.

estimates from chain #2
estimates from chain #1finite sum
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Private & ConfidentialMCMC Couplings: Sampling

● Coupling MCMC: use two MCMC chains with the same stationary 
distribution that are coupled

■ Marginally evolving according to 

■ There is a joint MCMC kernel 

■ Initialize the first chain

■ Then sample both chains from the joint kernel

● Define the meeting time

■ We design the kernel such that: (i) the two chains meet each 
other (   is random but finite), and (ii) they remain equal to 
each other afterwards
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Private & ConfidentialMCMC Couplings: Unbiased Estimation

● Use the samples from both chains to form an estimator

● Proof

telescoping sum

same marginals

swap expectation and limit

by design



Unbiased Estimators 
on an Extended Space



Private & ConfidentialOur Proposal

● Start with 

● Form the augmented model and augmented proposal

● Run a coupled MCMC kernel on the extended space, targeting the augmented posterior

■ How to form the kernel?



Private & ConfidentialPIMH Algorithm (Non-Coupled Version)
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Private & ConfidentialPIMH Algorithm (Coupled Version)

● After collecting samples, obtain the unbiased gradient estimator as

The function h is



Private & ConfidentialOur Contributions

● Our MCMC algorithm is based on ISIR (rather than PIMH)

● We propose an extension of ISIR, called DISIR, that significantly reduces the estimator variance

● We derive sufficient conditions that guarantee a finite-variance unbiased estimator in finite time

● Our estimator is based on a lagged coupling estimator, which further reduces the variance



Private & ConfidentialImportance Sampling in High-Dimensional Spaces

● IS typically fails in high dimensions, when one weight 
dominates the others

● We augment the dimensionality with K-1 particles 

○ So an IS-based MCMC algorithm should perform poorly 
(and the MCMC chains would never meet)

○ However, performance improves with dimensionality 
(and meeting occurs earlier) as the model and 
proposals become closer to each other when K 
increases



Experiments and 
Results



Private & ConfidentialPPCA: Analysis of Unbiasedness

(ours)



Private & ConfidentialVAE on Binarized MNIST

test log-likelihood

train log-likelihood



Private & ConfidentialAnalysis of the Meeting Time



Private & ConfidentialVAE on Fashion-MNIST and CIFAR-10

test log-likelihood

train log-likelihood (fashion-MNIST)



Private & ConfidentialConclusions

The combination of latent space augmentation and 
coupling estimators gives practical unbiased gradients

Unbiased gradient estimation improves the model’s 
predictive performance for VAEs

The computational time is higher, but we can use this 
method to refine model fits

Future work on improving coupling estimators will also 
reduce the computational complexity


