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Probabilistic Modeling Pipeline
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I Posit generative process with hidden and observed variables

I Given the data, reverse the process to infer hidden variables

I Use hidden structure to make predictions, explore the dataset, etc.

2



Probabilistic Modeling Pipeline
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I Incorporate domain knowledge with interpretable components

I Separate assumptions from computation

I Facilitate collaboration with domain experts

2



Applications: Gene Signature Discovery

Can we identify de novo gene expression patterns in scRNA-seq?
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Applications: Consumer Preferences

Can we use mobile location data to find
the most promising location for a new restaurant?

Restaurants in the Bay Area
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Applications: Shopping Behavior

Can we use past shopping transactions to learn customer preferences
and predict demand as a function of price?
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Background: Probabilistic Modeling

I Latent variables z

I Observations x

I Probabilistic model p(x , z)

I Posterior p(z | x) = p(x,z)∫
p(x,z)dz
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Background: Probabilistic Modeling

p(z | x) =
p(x , z)∫
p(x , z)dz

I The posterior allows us to explore the data and make predictions

I Approximating the posterior is the central challenge of Bayesian
inference
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Inference
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Background: Variational Inference

I Variational inference approximates the posterior

I Find simpler distribution qθ(z) ≈ p(z | x)

I Use KL divergence to measure similarity between qθ(z) and p(z | x)

I Minimize KL divergence w.r.t. variational parameters θ
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Background: Mean-Field Variational Inference

I Classical VI: Mean-field variational distribution:

qθ(z) =
∏

n

qθn(zn)

I Simple, but might not be accurate
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Our Goal: More Expressive Variational Distributions
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Blue dots: samples from qθ(z)
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Variational Inference with Implicit Distributions

I Easy to draw samples from qθ(z):

sample ε ∼ q(ε); set z = fθ(ε)

I Cannot evaluate the density qθ(z)

I Flexible distribution due to the non-linear transformation
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VI with Implicit Distributions is Hard

I The VI objective is the ELBO (equivalent to minimizing KL),

L(θ) = Eqθ(z)

[
log p(x , z)︸ ︷︷ ︸

model

− log qθ(z)︸ ︷︷ ︸
entropy

]

I Gradient of the objective ∇θL(θ) (reparameterization)

∇θL(θ) = Eq(ε)

[
∇z (log p(x , z)− log qθ(z))

∣∣
z=fθ(ε)

×∇θfθ(ε)
]

I Monte Carlo estimates require ∇z log qθ(z) (not available)
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Unbiased Implicit Variational Inference

I We describe how to obtain an unbiased Monte Carlo estimator

I We avoid density ratio estimation

I Key ideas:

1. Semi-implicit construction of qθ(z)

2. Gradient of the entropy component as an expectation,

∇z log qθ(z) = Edistrib(·) [function(z , ·)]
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UIVI Step 1: Semi-Implicit Distribution

I Implicit distribution:

I (Semi-)implicit distribution:
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UIVI Step 1: Semi-Implicit Distribution

I (Semi-)implicit distribution

I Example: The conditional qθ(z | ε) is a Gaussian,

qθ(z | ε) = N (z |µθ(ε),Σθ(ε))
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UIVI Step 1: Semi-Implicit Distribution

I (Semi-)implicit distribution

I The distribution qθ(z) is still implicit,
I Easy to sample,

sample ε ∼ q(ε),

obtain µθ(ε) and Σθ(ε)

sample z ∼ N (z |µθ(ε),Σθ(ε))

I The variational distribution qθ(z) is not tractable,

qθ(z) =

∫
q(ε)qθ(z | ε)dε
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UIVI Step 1: Semi-Implicit Distribution

I (Semi-)implicit distribution

I Assumptions on the conditional qθ(z | ε):
I Reparameterizable
I Tractable gradient ∇z log qθ(z | ε)

Note: this is different from ∇z log qθ(z) (still intractable)

18



UIVI Step 1: Semi-Implicit Distribution

I (Semi-)implicit distribution

I The Gaussian meets both assumptions:
I Reparameterizable,

u ∼ N (u | 0, I ), z = hθ(u ; ε) = µθ(ε) + Σθ(ε)1/2u

I Tractable gradient,

∇z log qθ(z | ε) = −Σθ(ε)−1(z − µθ(ε))
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UIVI Step 2: Gradient as Expectation

I Goal: Estimate the gradient of the entropy component, ∇z log qθ(z)

I Rewrite as an expectation,

∇z log qθ(z) = Eqθ(ε′ | z) [∇z log qθ(z | ε′)]

I Form Monte Carlo estimate,

∇z log qθ(z) ≈ ∇z log qθ(z | ε′), ε′ ∼ qθ(ε′ | z)
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UIVI: Full Algorithm

I The gradient of the ELBO is

∇θL(θ) = Eq(ε)q(u)

[
∇z (log p(x , z)− log qθ(z))

∣∣
z=hθ(u ; ε)

×∇θhθ(u ; ε)
]

I Estimate the gradient based on samples:

1. Sample ε ∼ q(ε), u ∼ q(u) (standard Gaussians)
2. Set z = hθ(ε ; u) = µθ(ε) + Σθ(ε)1/2u
3. Evaluate ∇z log p(x , z) and ∇θhθ(u ; ε)
4. Sample ε′ ∼ qθ(ε′ | z)
5. Approximate ∇z log qθ(z) ≈ ∇z log qθ(z | ε′)
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UIVI: The Reverse Conditional

I The distribution qθ(ε′ | z) is the reverse conditional
The conditional is qθ(z | ε)

I Sample from qθ(ε′ | z) using HMC, targeting

q(ε′ | z) ∝ q(ε′)qθ(z | ε′)

I Problem: HMC is slow. . . How to accelerate this?
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UIVI: The Reverse Conditional

I Recall the UIVI algorithm,

UIVI: Full Algorithm

I The gradient of the ELBO is

r✓L(✓) = Eq(")q(u)

h
rz (log p(x , z) � log q✓(z))

��
z=h✓(u ; ")

⇥r✓h✓(u ; ")
i

I Estimate the gradient based on samples:

1. Sample " ⇠ q("), u ⇠ q(u) (standard Gaussians)
2. Set z = h✓(" ; u) = µ✓(") + ⌃✓(")

1/2u
3. Evaluate rz log p(x , z) and r✓h✓(u ; ")
4. Sample "0 ⇠ q✓("

0 | z)
5. Approximate rz log q✓(z) ⇡ rz log q✓(z | "0)

21

I We have that (ε, z) ∼ qθ(ε, z) = q(ε)qθ(z | ε) = qθ(z)qθ(ε | z)

I Thus, ε is a sample from qθ(ε | z)

I To accelerate sampling ε′ ∼ q(ε′ | z), initialize HMC at ε
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UIVI: The Reverse Conditional

I Sample from qθ(ε′ | z) using HMC targeting

q(ε′ | z) ∝ q(ε′)qθ(z | ε′)

I Initialize HMC at stationarity (using ε)

I A few HMC iterations to reduce correlation between ε and ε′
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Toy Experiments
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Experiments: Multinomial Logistic Regression

p(x , z) = p(z)
N∏

n=1

exp{x>n zyn + z0yn}∑
k exp{x>n zk + z0k}
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UIVI provides better ELBO and predictive performance than SIVI
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Experiments: Multinomial Logistic Regression

p(x , z) = p(z)
N∏

n=1

exp{x>n zyn + z0yn}∑
k exp{x>n zk + z0k}
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Number of HMC iterations does not significantly impact results
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Experiments: VAE

I Model is pφ(x , z) =
∏

n p(zn)pφ(xn | zn)

I Amortized variational distrib. qθ(zn | xn) =
∫
q(εn)qθ(zn | εn, xn)dεn

I Goal: Find model parameters φ and variational parameters θ

Manuscript under review by AISTATS 2019
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Figure 3. Estimates of the ���� and the test log-likelihood as a function of wall-clock time for the Bayesian multinomial
logistic regression model (Section 4.2). Compared to ���� (red), ���� (blue) achieves a better bound on the marginal
likelihood and has better predictive performance.

ages of clothing items. We binarize the Fashion-�����
images with a threshold at 0.5. Images in both datasets are
of size 28⇥ 28 pixels.

Variational family. We use the variational family described
in Section 4.1 with Gaussian prior and Gaussian condi-
tional. Since the variational distribution is amortized, we let
the conditional q✓(zn | "n, xn) depend on the observation
xn, such that the variational distribution is q✓(zn | xn) =R

q("n)q✓(zn | "n, xn)d"n. We obtain the mean of the Gaus-
sian conditional as the output of a neural network having as
inputs both xn and "n. We set the dimensionality of "n to
10 and the width of each the two hidden layers of the neural
network to 200.

For comparisons, we also fit a standard ��� [Kingma and
Welling, 2014]. The standard ��� uses an explicit Gaussian
distribution whose mean and covariance are functions of
the input, i.e., q✓(zn | xn) = N (zn | µ✓(xn), ⌃✓(xn)). The
mean and covariance are parameterized using two separate
neural networks with the same structure described above,
and the covariance is set to be diagonal. The neural network
for the covariance has softplus activations in the output layer,
i.e., softplus(x) = log(1 + ex).

Experimental setup. For the generative model p�(xn | zn)
we use a factorized Bernoulli distribution. We use a two-
hidden-layer neural network with 200 hidden units on each
hidden layer, whose sigmoidal outputs define the means
of the Bernoulli distribution. We set the prior p(zn) =
N (zn | 0, I) and the dimensionality of zn to 10. We run
400,000 iterations of each method (explicit variational distri-
bution, ����, and ����), using the same initialization and a
minibatch of size 100. We set the ���� parameter L = 100 so
that both ���� and ���� have similar complexity (see below).

average test log-likelihood
method ����� Fashion-�����

Explicit (standard ���) �98.29 �126.73
���� �97.77 �121.53

���� [this paper] �94.09 �110.72

Table 2. Estimates of the marginal log-likelihood on the test
set for the ��� (Section 4.3). ���� gives better predictive
performance than ����.

We set the learning rate ⌘ = 10�3 for the network parame-
ters of the variational Gaussian conditional, ⌘ = 2 · 10�4 for
its covariance (we also set ⌘ = 2 · 10�4 for the network that
parameterizes the covariance of the explicit distribution),
and ⌘ = 10�3 for the network parameters of the generative
model. We reduce the learning rate by a factor of 0.9 every
15,000 iterations.

Results. We estimate the marginal likelihood on the test set
using importance sampling,

log p(xn) ⇡ log
1

S

SX

s=1

p�(xn | z(s)
n )p(z

(s)
n )

1
M

PM
m=1 q✓(z

(s)
n | "(m)

n , xn)
,

z(s)
n ⇠ q✓(zn | xn), "(m)

n ⇠ q("),

where we set S = 1,000 and M = 10,000 samples.

Table 2 shows the estimated values of the test marginal like-
lihood for all methods and datasets. ���� provides better pre-
dictive performance than ����, which in turn gives better pre-
dictions than the explicit Gaussian approximation.

In terms of computational complexity, the average time per
iteration is similar for ���� and ����. On �����, it is 0.14
seconds for ���� and 0.16 seconds for ����; on Fashion-

UIVI provides better ELBO and predictive performance
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Conclusion

I UIVI approximates the posterior with an expressive variational
distribution

I The variational distribution is implicit

I UIVI directly optimizes the ELBO

I Good results on Bayesian multinomial logistic regression and VAEs
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Proof of the Key Equation

I Goal: Prove that

∇z log qθ(z) = Eqθ(ε | z) [∇z log qθ(z | ε)]

I Start with log-derivative identity,

∇z log qθ(z) =
1

qθ(z)
∇zqθ(z)

I Apply the definition of qθ(z) through a mixture,

∇z log qθ(z) =
1

qθ(z)

∫
∇zqθ(z | ε)q(ε)dε

I Apply the log-derivative identity on qθ(z | ε),

∇z log qθ(z) =
1

qθ(z)

∫
qθ(z | ε)q(ε)∇z log qθ(z | ε)dε.

I Apply Bayes’ theorem
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SIVI

I SIVI optimizes a lower bound of the ELBO,

L(L)
SIVI(θ)=Eε∼q(ε)

[
Ez∼qθ(z | ε)

[
Eε(1),...,ε(L)∼q(ε)

[
log p(x , z)

− log

(
1

L + 1

(
qθ(z | ε) +

L∑

`=1

qθ(z | ε(`))
))]]]
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