Augment and Reduce: Stochastic Inference for Large Categorical Distributions

Francisco J. R. Ruiz

April 27th, 2018

Joint Work With

Categorical Distributions

- ▶ A probability distribution on a set of *K* outcomes
- ▶ Normalized, $\sum_k p_k = 1$
- ▶ Ubiquitous in machine learning and many other disciplines

Our Contribution

- lacktriangle Goal: Speed up training for models with large categoricals $(K\gg 1)$
- ▶ Contribution: A fast algorithm with controlled complexity
- ▶ Key ideas: Variable augmentation, stochastic variational inference

Softmax

▶ One widely applied parameterization of a categorical,

$$p(y=k \mid \psi) = \frac{e^{\psi_k}}{\sum_{k'} e^{\psi_{k'}}}$$

▶ Transforms reals into probabilities

- ▶ Observations are features and labels, $\{x_n, y_n\}_{n=1}^N$
- ▶ Each label $y_n \in \{1, ..., K\}$

- ▶ Observations are features and labels, $\{x_n, y_n\}_{n=1}^N$
- ▶ Each label $y_n \in \{1, ..., K\}$
- ▶ Each observation *n* is assigned a real value,

$$\psi_k^{(n)} = \mathbf{w}_k^{\top} \mathbf{x}_n$$

▶ Goal: Find the weights $w = (w_1, ..., w_K)$

▶ Maximize the likelihood of the data w.r.t. the weights,

find
$$w$$
 to maximize $\mathcal{L}_{\text{log-lik}} = \sum_{n} \log p(y_n \mid x_n, w)$

▶ Maximize the likelihood of the data w.r.t. the weights,

find
$$w$$
 to maximize $\mathcal{L}_{\text{log-lik}} = \sum_{n} \log p(y_n \mid x_n, w)$

Assuming the softmax transformation,

$$\log p(y_n \mid x_n, w) = \log \left(\frac{e^{w_{y_n}^\top x_n}}{\sum_{k'} e^{w_{k'}^\top x_n}} \right)$$

- ▶ Optimization w.r.t. w
- Gradient ascent

$$\begin{array}{c} w^{(0)} \\ \times \\ w^{(1)} \\ \times \\ \times \end{array} \times \begin{array}{c} w^{(2)} \\ \times \\ \end{array} \times \begin{array}{c} w^{(3)} \\ \end{array}$$

► The gradient is

$$\nabla_{w} \mathcal{L}_{\text{log-lik}} = \sum_{n} \nabla_{w} \log p(y_{n} | x_{n}, w)$$

$$\nabla_w \log p(y_n \mid x_n, w) = \nabla_w \log \left(\frac{e^{w_{y_n}^\top x_n}}{\sum_{k'} e^{w_{k'}^\top x_n}} \right)$$

Problem: Evaluating the gradient is $\mathcal{O}(K)$

$$\nabla_{w} \log p(y_{n} \mid x_{n}, w) = \nabla_{w} \log \left(\frac{e^{w_{y_{n}}^{\top} x_{n}}}{\sum_{k'} e^{w_{k'}^{\top} x_{n}}} \right)$$

- **Problem:** Evaluating the gradient is $\mathcal{O}(K)$
- ▶ Evaluation is needed for each n = 1, ..., N and at each iteration of gradient ascent

$$\nabla_w \log p(y_n \mid x_n, w) = \nabla_w \log \left(\frac{e^{w_{y_n}^\top x_n}}{\sum_{k'} e^{w_{k'}^\top x_n}} \right)$$

- **Problem:** Evaluating the gradient is $\mathcal{O}(K)$
- ▶ Evaluation is needed for each n = 1, ..., N and at each iteration of gradient ascent

$$\begin{array}{c} w^{(0)} \\ \times \\ w^{(1)} \\ \times \\ \end{array} \times \begin{array}{c} w^{(2)} \\ \times \\ \end{array} \times \begin{array}{c} w^{(3)} \\ \end{array}$$

For large values of K, this is prohibitive

Large Categoricals

- ▶ The $\mathcal{O}(K)$ cost is not unique to the softmax
- lacktriangle Other models (multinomial probit/logistic) are also $\mathcal{O}(K)$

Large Categoricals

- ▶ The $\mathcal{O}(K)$ cost is not unique to the softmax
- ▶ Other models (multinomial probit/logistic) are also $\mathcal{O}(K)$
- ▶ When *K* is large, this is not OK

Large Categoricals

- ▶ The $\mathcal{O}(K)$ cost is not unique to the softmax
- ▶ Other models (multinomial probit/logistic) are also $\mathcal{O}(K)$
- ▶ When K is large, this is not OK
- ► Examples: language models, recommendation systems, discrete choice models, reinforcement learning

Our Contribution

- \blacktriangleright An algorithm with reduced complexity, $\mathcal{O}(|\mathcal{S}|)$ instead of $\mathcal{O}(K)$
- lacktriangle Complexity controlled by parameter $|\mathcal{S}|$

Our Contribution

- ▶ An algorithm with reduced complexity, $\mathcal{O}(|\mathcal{S}|)$ instead of $\mathcal{O}(K)$
- lacktriangleright Complexity controlled by parameter $|\mathcal{S}|$
- ► Two steps
 - 1. Augment the model with an auxiliary variable
 - 2. Reduce complexity via subsampling (stochastic optimization)

Let's Take A Step Back...

▶ Where does the softmax come from?

$$p(y=k \mid \psi) = \frac{e^{\psi_k}}{\sum_{k'} e^{\psi_{k'}}}$$

▶ Draw random errors i.i.d., $\varepsilon_{\it k} \sim \phi(\cdot)$

- ▶ Draw random errors i.i.d., $\varepsilon_k \sim \phi(\cdot)$
- ▶ Define a *utility* for each outcome *k*,

$$\psi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}$$

(mean utility plus noise)

- ▶ Draw random errors i.i.d., $\varepsilon_k \sim \phi(\cdot)$
- ▶ Define a *utility* for each outcome *k*,

$$\psi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}$$

(mean utility plus noise)

Choose the outcome with the largest utility,

$$y = \arg\max_k (\psi_k + \varepsilon_k)$$

- ▶ Draw random errors i.i.d., $\varepsilon_k \sim \phi(\cdot)$
- ▶ Define a *utility* for each outcome *k*,

$$\psi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}$$

(mean utility plus noise)

Choose the outcome with the largest utility,

$$y = \arg\max_{k} (\psi_k + \varepsilon_k)$$

▶ Integrate out the error terms $(\varepsilon_k$'s) to find the marginal $p(y \mid \psi)$

 \blacktriangleright Different priors $\phi(\varepsilon)$ lead to different categoricals

- ▶ Different priors $\phi(\varepsilon)$ lead to different categoricals
- ▶ For $\phi(\varepsilon) = \operatorname{Gumbel}(\varepsilon \,|\, 0,1)$, we recover the softmax

$$p(y = k \mid \psi) = \frac{e^{\psi_k}}{\sum_{k'} e^{\psi_{k'}}}$$

- ▶ Different priors $\phi(\varepsilon)$ lead to different categoricals
- ▶ For $\phi(\varepsilon) = \operatorname{Gumbel}(\varepsilon \,|\, 0,1)$, we recover the softmax

$$p(y = k \mid \psi) = \frac{e^{\psi_k}}{\sum_{k'} e^{\psi_{k'}}}$$

 Other models: multinomial probit (Gaussian prior), multinomial logistic (logistic prior)

▶ Augment the model with *only one* error term

- ▶ Augment the model with *only one* error term
- Work with the joint $p(y, \varepsilon | \psi)$
- ▶ Nice property: Amenable to stochastic optimization

▶ The marginal likelihood is the probability that the *realized utility* $\psi_k + \varepsilon_k$ is greater than the others,

▶ The marginal likelihood is the probability that the *realized utility* $\psi_k + \varepsilon_k$ is greater than the others,

$$p(y = k | \psi) = \text{Prob}(\psi_k + \varepsilon_k \ge \psi_{k'} + \varepsilon_{k'} \ \forall k' \ne k)$$

▶ The marginal likelihood is the probability that the *realized utility* $\psi_k + \varepsilon_k$ is greater than the others,

$$p(y = k | \psi) = \text{Prob} (\psi_k + \varepsilon_k \ge \psi_{k'} + \varepsilon_{k'} \ \forall k' \ne k)$$

► This is an integral,

$$p(y = k | \psi) = \int_{-\infty}^{+\infty} \phi(\varepsilon_k) \left(\prod_{k' \neq k} \int_{-\infty}^{\varepsilon_k + \psi_k - \psi_{k'}} \phi(\varepsilon_{k'}) d\varepsilon_{k'} \right) d\varepsilon_k$$

▶ The marginal likelihood is the probability that the *realized utility* $\psi_k + \varepsilon_k$ is greater than the others,

$$p(y = k | \psi) = \text{Prob} (\psi_k + \varepsilon_k \ge \psi_{k'} + \varepsilon_{k'} \ \forall k' \ne k)$$

► This is an integral,

$$p(y = k \mid \psi) = \int_{-\infty}^{+\infty} \phi(\varepsilon_k) \left(\prod_{k' \neq k} \int_{-\infty}^{\varepsilon_k + \psi_k - \psi_{k'}} \phi(\varepsilon_{k'}) d\varepsilon_{k'} \right) d\varepsilon_k$$
$$= \int_{-\infty}^{+\infty} \phi(\varepsilon) \left(\prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'}) \right) d\varepsilon$$

 $\Phi(\cdot)$ is the CDF of the distribution $\phi(\cdot)$

▶ The marginal likelihood is the probability that the *realized utility* $\psi_k + \varepsilon_k$ is greater than the others,

$$p(y = k | \psi) = \text{Prob}(\psi_k + \varepsilon_k \ge \psi_{k'} + \varepsilon_{k'} \ \forall k' \ne k)$$

► This is an integral,

$$p(y = k \mid \psi) = \int_{-\infty}^{+\infty} \phi(\varepsilon_k) \left(\prod_{k' \neq k} \int_{-\infty}^{\varepsilon_k + \psi_k - \psi_{k'}} \phi(\varepsilon_{k'}) d\varepsilon_{k'} \right) d\varepsilon_k$$
$$= \int_{-\infty}^{+\infty} \phi(\varepsilon) \left(\prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'}) \right) d\varepsilon$$

 $\Phi(\cdot)$ is the CDF of the distribution $\phi(\cdot)$

Augment the model,

$$p(y = k, \varepsilon | \psi) = \phi(\varepsilon) \prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'})$$

The Augmented Model

▶ We now have the augmented model,

$$p(y = k, \varepsilon | \psi) = \phi(\varepsilon) \prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'})$$

The Augmented Model

▶ The augmented model,

$$p(y = k, \varepsilon | \psi) = \phi(\varepsilon) \prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'})$$

The Augmented Model

▶ The augmented model,

$$p(y = k, \varepsilon | \psi) = \phi(\varepsilon) \prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'})$$

▶ Nice property: The log-joint has a summation over k',

$$\log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

The Augmented Model

The augmented model,

$$p(y = k, \varepsilon | \psi) = \phi(\varepsilon) \prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'})$$

▶ Nice property: The log-joint has a summation over k',

$$\log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

- This enables fast unbiased estimates,
 - 1. Sample a subset of outcomes $S \subseteq \{1, ..., K\} \setminus \{k\}$ of fixed size |S|
 - 2. Compute an estimate of the log-joint in $\mathcal{O}(|\mathcal{S}|)$ complexity

$$\log \phi(\varepsilon) + \frac{K-1}{|\mathcal{S}|} \sum_{k' \in \mathcal{S}} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

Augment & Reduce: Variational EM

▶ We are not interested in the log-joint, but in the log-marginal

Augment & Reduce: Variational EM

- ▶ We are not interested in the log-joint, but in the log-marginal
- Variational inference relates both quantities,

$$\log p(y \mid \psi) \ge \mathbb{E}_{q(\varepsilon)} [\log p(y, \varepsilon \mid \psi) - \log q(\varepsilon)]$$

Augment & Reduce: Variational EM

- ▶ We are not interested in the log-joint, but in the log-marginal
- Variational inference relates both quantities,

$$\log p(y \mid \psi) \ge \mathbb{E}_{q(\varepsilon)} [\log p(y, \varepsilon \mid \psi) - \log q(\varepsilon)]$$

- ▶ Maximize the bound using variational EM
 - 1. E step: Optimize w.r.t. the distribution $q(\varepsilon)$
 - 2. M step: Take a gradient step w.r.t. ψ (or its parameters w)

Recall the classification objective,

$$\mathcal{L}_{\text{log-lik}} = \sum_{n} \log p(y_n \,|\, x_n, w)$$

Recall the classification objective,

$$\mathcal{L}_{\text{log-lik}} = \sum_{n} \log p(y_n \,|\, x_n, w)$$

Replace each term with its variational bound,

$$\mathcal{L}_{\text{bound}} = \sum_{n} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\log p(y_n, \varepsilon^{(n)} | x_n, w) - \log q(\varepsilon^{(n)}) \right]$$

Recall the classification objective,

$$\mathcal{L}_{\text{log-lik}} = \sum_{n} \log p(y_n \,|\, x_n, w)$$

Replace each term with its variational bound,

$$\mathcal{L}_{\text{bound}} = \sum_{n} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\log p(y_n, \varepsilon^{(n)} | x_n, w) - \log q(\varepsilon^{(n)}) \right]$$

- Algorithm
 - 1. Subsample datapoints $\mathcal{B} \subseteq \{1, \dots, N\}$
 - 2. For each $n \in \mathcal{B}$, subsample classes $\mathcal{S} \subseteq \{1, \dots, K\} \setminus \{y_n\}$
 - 3. (E step) For each $n \in \mathcal{B}$, update its $q(\varepsilon^{(n)})$ $\mathcal{O}(|\mathcal{S}|)$
 - 4. (M step) For each $n \in \mathcal{B}$, compute gradient w.r.t. w $\mathcal{O}(|\mathcal{S}|)$
 - 5. (M step) Take gradient step for w
 - 6. Repeat

▶ Recall the log-joint in the augmented model,

$$\log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

Recall the log-joint in the augmented model,

$$\log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

$$\begin{array}{c} w^{(0)} \\ \times \\ w^{(1)} \\ \times \\ \end{array} \begin{array}{c} w^{(2)} \\ \times \\ \end{array} \begin{array}{c} w^{(3)} \end{array}$$

► Consider the gradient of the bound in the M step,

$$\nabla_{w} \mathcal{L}_{\text{bound}} = \nabla_{w} \sum_{n} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\log p(y_{n}, \varepsilon^{(n)} \mid x_{n}, w) - \log q(\varepsilon^{(n)}) \right]$$

Recall the log-joint in the augmented model,

$$\log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

$$\begin{array}{c} w^{(0)} \\ \times \\ w^{(1)} \\ \times \\ \end{array} \times \begin{array}{c} w^{(2)} \\ \times \\ \end{array} \times \begin{array}{c} w^{(3)} \end{array}$$

Consider the gradient of the bound in the M step,

$$\begin{split} \nabla_{w} \mathcal{L}_{\text{bound}} &= \nabla_{w} \sum_{n} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\log p(y_{n}, \varepsilon^{(n)} \mid x_{n}, w) - \log q(\varepsilon^{(n)}) \right] \\ &= \sum_{n} \sum_{k' \neq y_{n}} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\nabla_{w} \log \Phi(\varepsilon^{(n)} + w_{y_{n}}^{\top} x_{n} - w_{k'}^{\top} x_{n}) \right] \end{split}$$

Recall the log-joint in the augmented model,

$$\log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

$$\begin{array}{c} w^{(0)} \\ \times \\ w^{(1)} \\ \times \\ \times \\ \end{array} \times \begin{array}{c} w^{(2)} \\ \times \\ \end{array} \times \begin{array}{c} w^{(3)} \\ \end{array}$$

▶ Consider the gradient of the bound in the M step,

$$\begin{split} \nabla_{w} \mathcal{L}_{\text{bound}} &= \nabla_{w} \sum_{n} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\log p(y_{n}, \varepsilon^{(n)} \mid x_{n}, w) - \log q(\varepsilon^{(n)}) \right] \\ &= \sum_{n} \sum_{k' \neq y_{n}} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\nabla_{w} \log \Phi(\varepsilon^{(n)} + w_{y_{n}}^{\top} x_{n} - w_{k'}^{\top} x_{n}) \right] \\ &\approx \frac{N}{|\mathcal{B}|} \frac{K - 1}{|\mathcal{S}|} \sum_{n \in \mathcal{B}} \sum_{k' \in \mathcal{S}_{n}} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\nabla_{w} \log \Phi(\varepsilon^{(n)} + w_{y_{n}}^{\top} x_{n} - w_{k'}^{\top} x_{n}) \right] \end{split}$$

Recall the log-joint in the augmented model,

$$\log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

$$\begin{array}{c} w^{(0)} \\ \times \\ w^{(1)} \\ \times \\ \times \\ \end{array} \times \begin{array}{c} w^{(2)} \\ \times \\ \end{array} \times \begin{array}{c} w^{(3)} \\ \end{array}$$

Consider the gradient of the bound in the M step,

$$\begin{split} \nabla_{w} \mathcal{L}_{\text{bound}} &= \nabla_{w} \sum_{n} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\log p(y_{n}, \varepsilon^{(n)} \mid x_{n}, w) - \log q(\varepsilon^{(n)}) \right] \\ &= \sum_{n} \sum_{k' \neq y_{n}} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\nabla_{w} \log \Phi(\varepsilon^{(n)} + w_{y_{n}}^{\top} x_{n} - w_{k'}^{\top} x_{n}) \right] \\ &\approx \frac{N}{|\mathcal{B}|} \frac{K - 1}{|\mathcal{S}|} \sum_{n \in \mathcal{B}} \sum_{k' \in \mathcal{S}_{n}} \mathbb{E}_{q(\varepsilon^{(n)})} \left[\nabla_{w} \log \Phi(\varepsilon^{(n)} + w_{y_{n}}^{\top} x_{n} - w_{k'}^{\top} x_{n}) \right] \end{split}$$

- ▶ The softmax model is special
 - We can compute the optimal $q(\varepsilon)$ distribution
 - We can compute the integrals

- ▶ The softmax model is special
 - We can compute the optimal $q(\varepsilon)$ distribution
 - We can compute the integrals
- ▶ The optimal variational distribution is Gumbel,

$$q^{\star}(\varepsilon) = \operatorname{Gumbel}(\log \eta^{\star}, 1), \quad \eta^{\star} = 1 + \sum_{k' \neq k} e^{\psi_{k'} - \psi_k}$$

- ▶ The softmax model is special
 - We can compute the optimal $q(\varepsilon)$ distribution
 - We can compute the integrals
- The optimal variational distribution is Gumbel,

$$q^{\star}(\varepsilon) = \operatorname{Gumbel}(\log \eta^{\star}, 1), \quad \eta^{\star} = 1 + \sum_{k' \neq k} e^{\psi_{k'} - \psi_k}$$

▶ Instead, set

$$q^{\star}(\varepsilon) = \text{Gumbel}(\log \eta, 1)$$

- ▶ The softmax model is special
 - We can compute the optimal $q(\varepsilon)$ distribution
 - We can compute the integrals
- The optimal variational distribution is Gumbel,

$$q^{\star}(\varepsilon) = \operatorname{Gumbel}(\log \eta^{\star}, 1), \quad \eta^{\star} = 1 + \sum_{k' \neq k} e^{\psi_{k'} - \psi_k}$$

▶ Instead, set

$$q^{\star}(\varepsilon) = \operatorname{Gumbel}(\log \eta, 1)$$

Estimate the optimal natural parameter,

$$\widetilde{\eta} = 1 + \frac{K - 1}{|S|} \sum_{k' \in S} e^{\psi_{k'} - \psi_k}$$

(to update η , take a step in the direction of the natural gradient)

Augment & Reduce For Other Models

▶ For other models, the expectations are intractable

Augment & Reduce For Other Models

- ▶ For other models, the expectations are intractable
- ► We form Monte Carlo gradient estimators using the reparameterization trick

Augment & Reduce For Other Models

- ▶ For other models, the expectations are intractable
- ► We form Monte Carlo gradient estimators using the reparameterization trick
- Useful for both E and M steps

- ► Experiments: Linear classification
- ▶ Maximum likelihood estimation
- ▶ 5 datasets

N_{train}	$N_{ m test}$	covariates	classes	minibatch (obs.)	minibatch (classes)	iterations
60,000	10,000	784	10	500	1	35,000
4,880	2,413	1,836	148	488	20	5,000
25,968	6,492	784	1,623	541	50	45,000
15,539	3,809	5,000	896	279	50	100,000
1,186,239	306,782	203,882	2,919	1,987	60	5,970
	60,000 4,880 25,968 15,539	60,000 10,000 4,880 2,413 25,968 6,492 15,539 3,809	60,000 10,000 784 4,880 2,413 1,836 25,968 6,492 784 15,539 3,809 5,000	60,000 10,000 784 10 4,880 2,413 1,836 148 25,968 6,492 784 1,623 15,539 3,809 5,000 896	60,000 10,000 784 10 500 4,880 2,413 1,836 148 488 25,968 6,492 784 1,623 541 15,539 3,809 5,000 896 279	

- ► Comparisons against:
 - ► Exact softmax (only for MNIST and Bibtex)

- ► Comparisons against:
 - Exact softmax (only for MNIST and Bibtex)
 - One-vs-each (OVE) bound,

$$\mathcal{L}_{ ext{OVE}} = \sum_{k'
eq k} \log \sigma (\psi_k - \psi_{k'})$$

(it is a bound on the softmax)

► Time complexity

dataset	OVE (Titsias, 2016)	softmax	A&R [this paper] multi. probit multi. logistic			
MNIST	0.336 s	0.337 s	0.431 s	0.511 s		
Bibtex	0.181 s	0.188 s	0.244 s	0.246 s		
Omniglot	4.47 s	4.65 s	5.63 s	5.57 s		
EURLex-4K	5.54 s	5.65 s	6.46 s	6.23 s		
AmazonCat-13K	2.80 h	2.80 h	2.82 h	2.91 h		

▶ Quality of the bound

ightharpoonup Quality of the classification weights w_k (predictive performance)

dataset	exa log lik	ct acc	softma OVE (Tits log lik	x model ias, 2016) acc	A&R [this paper] log lik acc		multi. probit A&R [this paper] log lik acc		multi. logistic A&R [this paper] log lik acc	
MNIST Bibtex Omniglot EURLex-4K AmazonCat-13K	-0.261 -3.188 - -	0.927 0.361 - -	-0.276 -3.300 -5.667 - 4.241 -3.880	0.919 0.352 0.179 0.247 0.388	-0.271 -3.036 -5.171 -4.593 -3.795	0.924 0.361 0.201 0.207 0.420	-0.302 -4.184 -7.350 -4.193 -3.593	0.918 0.346 0.178 0.263 0.411	-0.287 -3.151 -5.395 -4.299 -4.081	0.917 0.353 0.184 0.226 0.350

Conclusion

- A method to scale up training for models involving large categorical distributions
- Stochastic variational EM
- ▶ Controlled complexity (|S| is a parameter)
- Can be embedded in many different models
- ▶ Not limited to maximum likelihood estimation

Thank you for your attention!

