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Categorical Distributions

> A probability distribution on a set of K outcomes
» Normalized, >, pr =1

» Ubiquitous in machine learning and many other disciplines



Our Contribution

> Goal: Speed up training for models with large categoricals (K > 1)
» Contribution: A fast algorithm with controlled complexity

> Key ideas: Variable augmentation, stochastic variational inference



Softmax

» One widely applied parameterization of a categorical,
ewk

P(y:kW):W

» Transforms reals into probabilities
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A Case Study: Classification

» Observations are features and labels, {x,, y,}"_;
» Each label y, € {1,...,K}
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Observations are features and labels, {x,, y ",
Each label y, € {1,...,K}

Each observation n is assigned a real value,
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Goal: Find the weights w = (wy, ..., wk)



A Case Study: Classification

» Maximize the likelihood of the data w.r.t. the weights,

find w to maximize Liog1ik = Z log p(yn | Xn, W)
n



A Case Study: Classification

» Maximize the likelihood of the data w.r.t. the weights,

find w to maximize Liog1ik = Z log p(yn | Xn, W)
n

» Assuming the softmax transformation,

eWy:X,,
log p(yn | Xn, w) = log | ————
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A Case Study: Classification

» Optimization w.r.t. w
» Gradient ascent
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» The gradient is

Vw£10g—lik = Z Vuw |0g p()/n | Xn, W)



A Case Study: Classification

Vo log p(yn | xa, w) = V,, log (

» Problem: Evaluating the gradient is O(K)
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» Problem: Evaluating the gradient is O(K)

» Evaluation is needed for each n=1,..., N and at each iteration of
gradient ascent
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A Case Study: Classification
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» Problem: Evaluating the gradient is O(K)

» Evaluation is needed for each n =1,..., N and at each iteration of
gradient ascent
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> For large values of K, this is prohibitive



Large Categoricals

» The O(K) cost is not unique to the softmax

» Other models (multinomial probit/logistic) are also O(K)
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Large Categoricals

» The O(K) cost is not unique to the softmax

v

Other models (multinomial probit/logistic) are also O(K)

v

When K is large, this is not OK

v

Examples: language models, recommendation systems, discrete
choice models, reinforcement learning
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Our Contribution

> An algorithm with reduced complexity, O(|S|) instead of O(K)

» Complexity controlled by parameter |S|
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Our Contribution

> An algorithm with reduced complexity, O(|S|) instead of O(K)
» Complexity controlled by parameter |S|

» Two steps

1. Augment the model with an auxiliary variable
2. Reduce complexity via subsampling (stochastic optimization)
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Let's Take A Step Back...

» Where does the softmax come from?

ply = k) =

ewk

Zk/ eV
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The Utility Perspective

» Draw random errors i.i.d., g4 ~ ¢(-)

13



The Utility Perspective

» Draw random errors i.i.d., g4 ~ ¢(-)

» Define a utility for each outcome k,
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(mean utility plus noise)
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The Utility Perspective

» Draw random errors i.i.d., g4 ~ ¢(-)

» Define a utility for each outcome k,

Vi + €k

(mean utility plus noise)
» Choose the outcome with the largest utility,

y = argmax(yx + k)
k
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The Utility Perspective

v

Draw random errors i.i.d., gx ~ ¢(-)

v

Define a utility for each outcome k,

Vi + €k

(mean utility plus noise)

v

Choose the outcome with the largest utility,

y = argmax(yx + k)
k

v

Integrate out the error terms (£4's) to find the marginal p(y | )
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The Utility Perspective

» Different priors ¢(¢) lead to different categoricals
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The Utility Perspective

» Different priors ¢(¢) lead to different categoricals

> For ¢(¢) = Gumbel(e|0, 1), we recover the softmax

ewk

P(y:kW):W
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The Utility Perspective

» Different priors ¢(¢) lead to different categoricals

> For ¢(¢) = Gumbel(e|0, 1), we recover the softmax

ewk

P(Y:kW):W

» Other models: multinomial probit (Gaussian prior), multinomial
logistic (logistic prior)
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The Utility Perspective
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The Utility Perspective
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» Augment the model with only one error term
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The Utility Perspective
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» Augment the model with only one error term
» Work with the joint p(y, e | )

» Nice property: Amenable to stochastic optimization
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Let's Do Some Maths

» The marginal likelihood is the probability that the realized utility
Pk + €k is greater than the others,
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Let's Do Some Maths

» The marginal likelihood is the probability that the realized utility
Pk + €k is greater than the others,

Py = k|9) = Prob (y +ex > i +ex VK # k)
» This is an integral,
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Let's Do Some Maths

» The marginal likelihood is the probability that the realized utility
Pk + €k is greater than the others,

ply = k| ) = Prob (¢ + £ > v + 0 VK # k)

» This is an integral,

+oo €k+’lbk7’¢1k/
py=klv)= [ o (T1 [ olew)den | oo
k' )~

_/m é(c) (H ¢(e+¢k—¢k,)) de

—oo k' £k
®(+) is the CDF of the distribution ¢(-)
» Augment the model,

ply = ke[ v) = é(e) [] (e + v — ¢w)

K £k
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The Augmented Model

» We now have the augmented model,

ply = koe|9) = o(e) [ o(c+vx —vw)

K £k
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The Augmented Model

» The augmented model,

ply = ke |9) = o(e) [ o(c+vx —vw)
k' #k
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The Augmented Model

» The augmented model,

ply = ke |b) = ¢(e) [ ®(e+ vu — )

K £k

» Nice property: The log-joint has a summation over k’,

log p(y = k,e|¢) = log ¢(c) + Y _ log ®(e + th — )

k' #k
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The Augmented Model

» The augmented model,

ply = ke |b) = ¢(e) [ ®(e+ vu — )

k' £k

» Nice property: The log-joint has a summation over k’,

log p(y = ke |9) = log ¢(c) + > log ®(e + b — vw)

k' #k

» This enables fast unbiased estimates,

1. Sample a subset of outcomes & C {1,..., K}\{k} of fixed size |S]|
2. Compute an estimate of the log-joint in O(|S]|) complexity

! Z log (e + 1k — tw)

K
logd(e) + ——
O
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Augment & Reduce: Variational EM

» We are not interested in the log-joint, but in the log-marginal
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Augment & Reduce: Variational EM

» We are not interested in the log-joint, but in the log-marginal

» Variational inference relates both quantities,

log p(y | ) > Eq(c) [log p(y, € [ 1) — log q(e)]

» Maximize the bound using variational EM

1. E step: Optimize w.r.t. the distribution g(¢)
2. M step: Take a gradient step w.r.t. ¢ (or its parameters w)
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Example: Augment & Reduce For Classification

» Recall the classification objective,

Liog ik = > _ log p(yn | X, W)
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Example: Augment & Reduce For Classification

» Recall the classification objective,

Liog ik = > _ log p(yn | X, W)

> Replace each term with its variational bound,

Lbound = ZE [|ng Yo, € | xp, W) — log q(s(”))]
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Example: Augment & Reduce For Classification

» Recall the classification objective,

Liog ik = > _ log p(yn | X, W)

» Replace each term with its variational bound,

Lhouna = Y Eqe) ['Og p(¥n €™ | xa, w) — log q(E(”))]

> Algorithm

1.

ook wDd

Subsample datapoints B C {1,..., N}

For each n € B, subsample classes S C {1,..., K}\{ya}
(E step) For each n € B, update its g(¢(")

(M step) For each n € B, compute gradient w.r.t. w

(M step) Take gradient step for w

Repeat

o(ls1)
o(ls1)
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Example: Augment & Reduce For Classification

» Recall the log-joint in the augmented model,

log p(y = k,e|¢) = log¢(c) + Y _ log ®(e + th — )
k' #k

w©®

@
\’w w(2) w(3)
X ~ x X
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Example: Augment & Reduce For Classification

> Recall the log-joint in the augmented model,

log p(y = k,e|¢) = log d(c) + Y _ log ®(e + th — )

K £k
O

X w® (3)
\x w® w
\x/x
» Consider the gradient of the bound in the M step,

VuwLbound = Vw Z Eq(g(")) {|0g P(,Vn, 5(’1) |Xn7 W) - |0g q(g(n))}
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Example: Augment & Reduce For Classification

> Recall the log-joint in the augmented model,

log p(y = k,e|¢) = log d(c) + Y _ log ®(e + th — )

K £k
O

X w® (3)
\x w® w
\x/x
» Consider the gradient of the bound in the M step,

VuwLbound = Vw Z Eq(g(")) {|0g P(,Vn, 5(’1) |Xn7 W) - |0g q(g(n))}

= 303 By [V loB S+ s — i)
n k'#ya
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Example: Augment & Reduce For Classification

> Recall the log-joint in the augmented model,

log p(y = k,e|¢) = log d(c) + Y _ log ®(e + th — )

k' +k

w®

@ o) ®
x\il;/‘rxw
» Consider the gradient of the bound in the M step,
VwLbound = Vi ZEq(g(")) {|0g P(,Vn, el |Xn7 W) — log q(g(n))}

= Z Z Eq(em) {VW log CD(s(”) + W}IX,, — W,IX,,)]

Ky,

|B| s =3 Y B |V log ®(=(") + ) x, — wl xy)]
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Example: Augment & Reduce For Classification
> Recall the log-joint in the augmented model,
log p(y = k,e|¢) = log d(c) + Y _ log ®(e + th — )
Kk
O
o o) W®
x\il;/‘rxw
» Consider the gradient of the bound in the M step,

VwLbound = Vi Eq(g(")) {|0g P(,Vn, el |Xn7 W) — log Q(E(n)):|

=373 oy [V loB 0 + T, — )|
K'#yn
N K-1

~ n T T
~ ‘B| W Z ]Eq(E(")) |:VW |Og CD(E( ) + Wyan — Wk/Xn):|

k'eS,
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Augment & Reduce For Softmax Model

» The softmax model is special

> We can compute the optimal g(g) distribution
» We can compute the integrals
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» We can compute the integrals
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q*(¢) = Gumbel(logn*,1), n* =1+ Zew/ﬂ/)k
K/ #k
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g*(g) = Gumbel(logn, 1)
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Augment & Reduce For Softmax Model

» The softmax model is special

> We can compute the optimal g(g) distribution
» We can compute the integrals

» The optimal variational distribution is Gumbel,

g*(¢) = Gumbel(logn*,1), n* =1+ Zewww
k' £k

» |nstead, set
g*(g) = Gumbel(logn, 1)

» Estimate the optimal natural parameter,

~ K-1
n= 1+ 7267’2}’(,7#}"
‘S| k'eS

(to update 7, take a step in the direction of the natural gradient)
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Augment & Reduce For Other Models

» For other models, the expectations are intractable
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Augment & Reduce For Other Models

» For other models, the expectations are intractable

» We form Monte Carlo gradient estimators using the
reparameterization trick
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Augment & Reduce For Other Models

» For other models, the expectations are intractable

» We form Monte Carlo gradient estimators using the
reparameterization trick

» Useful for both E and M steps
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Experiments

» Experiments: Linear classification
» Maximum likelihood estimation

» 5 datasets

dataset Nicain Neest covariates  classes minibatch (obs.)  minibatch (classes) iterations
MNIST 60,000 10,000 784 10 500 1 35,000
Bibtex 4,880 2,413 1,836 148 488 20 5,000
Omniglot 25,968 6,492 784 1,623 541 50 45,000
EURLex-4K 15,539 3,809 5,000 896 279 50 100, 000
AmazonCat-13K 1,186,239 306,782 203,882 2,919 1,987 60 5,970
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Experiments

» Comparisons against:
» Exact softmax (only for MNIST and Bibtex)
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Experiments

» Comparisons against:

» Exact softmax (only for MNIST and Bibtex)
> One-vs-each (OVE) bound,

Love = Z log o(x — i)

Kk

(it is a bound on the softmax)
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Experiments

> Time complexity

A&R [this paper]

dataset OVE (Titsias, 2016) softmax multi. probit multi. logistic
MNIST 0.336 s 0.337s 0.431s 0.511s
Bibtex 0.181s 0.188's 0.244 s 0.246 s
Omniglot 4.47s 4.65s 5.63 s 5.57s
EURLex-4K 5.54s 5.65s 6.46 s 6.23s
AmazonCat-13K 2.80 h 2.80h 2.82h 291h
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Experiments

» Quality of the bound

ELBO
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Experiments

> Quality of the classification weights wy (predictive performance)

softmax model multi. probit multi. logistic
exact OVE (Titsias, 2016) ~ A&R [this paper] A&R [this paper] A&R [this paper]

dataset log lik acc log lik acc log lik acc log lik acc log lik acc
MNIST —0.261  0.927 | —0.276 0919 | —0.271 0.924 —0.302  0.918 —0.287 0917
Bibtex —3.188 0.361 | —3.300 0.352 —3.036 0.361 —4.184  0.346 —3.151  0.353
Omniglot — - —5.667 0.179 | —=5.171 0.201 —7.350 0.178 —5.395 0.184
EURLex-4K - - —4.241  0.247 | —4.593  0.207 —4.193  0.263 —4.299  0.226
AmazonCat-13K - - —3.880 0.388 —3.795 0.420 —3.593  0.411 —4.081  0.350




Conclusion

v

A method to scale up training for models involving large categorical
distributions

v

Stochastic variational EM

v

Controlled complexity (|S| is a parameter)

v

Can be embedded in many different models

v

Not limited to maximum likelihood estimation
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Thank you for your attention!
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