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Multiuser Communication System

Multipath propagation Gaussian observation model
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8 / 14

Source SeparationSummary
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Infinite Factorial Dynamical Model
Isabel	Valera,	Francisco	J.	R.	Ruiz,	Lennart Svensson,	Fernando	Perez-Cruz

üGeneral BNP model for source separation:
- Infers number of sources from data.
- Valid for a wide range of applications.

üEfficient inference.
- Valid for many likelihood and dynamical

models.
üComprehensive set of experiments. 

Examples:Problem statement:
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Multitarget Tracking
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Why BNP?
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Why BNP?

• Pick a large enough #sources.

• Model selection (AIC, BIC).

• Bayesian model selection.

• BNP:

- Model complexity grows with data size.
- Unbounded #sources.
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I Pick a large enough #sources.

I Model selection (AIC, BIC).

I Bayesian model selection.

I BNP:
I Prior over infinite-dimensional parameter space.
I Model complexity grows with data size.
I Unbounded #sources.
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Multi-target tracking Cocktail party
Power

disaggregation
Multi-user
detection

stm 2 {0, 1}• Source activity:

• Dynamic system model:
q Source state:

q Observation model:

System memory: 

• On-off transitions:
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m = 1, . . . ,1q Infinite # of sources: S ⇠ mIBP(↵,�0,�1)
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Figure 1: (a) Graphical representation of the iFDM with memory length L = 2. The dashed lines
represent the memory. (b) Equivalent representation using extended states.

where X and S are T ⇥ M matrices containing all the states xtm and stm, respectively. We remark
that the likelihood of yt cannot depend on any hidden state x⌧m if s⌧m = 0.

In order to be able to deal with an infinite number of sources, we place a BNP prior over the binary
matrix S that contains all variables stm. In particular, we assume that S ⇠ mIBP(↵,�0,�1), i.e., S
is distributed as a mIBP [23] with parameters ↵, �0 and �1. The mIBP places a prior distribution
over binary matrices with a finite number of rows T and an infinite number of columns M , in which
each row represents a time instant, and each column represents a Markov chain. The mIBP ensures
that, for any finite value of T , only a finite number of columns M+ in S are active almost surely,
whereas the rest of them remain in the all-zero state and do not influence the observations. We
make use of the stick-breaking construction of the mIBP, which is particularly useful to develop
many practical inference algorithms [19, 23]. Under the stick-breaking construction, two hidden
variables for each Markov chain are introduced, representing the transition probabilities between
the active and inactive states. In particular, we define am = p(stm = 1|s(t�1)m = 0) as the
transition probability from inactive to active, and bm = p(stm = 1|s(t�1)m = 1) as the self-
transition probability of the active state of the m-th chain. In the stick-breaking representation, the
columns of S are ordered according to their values of am, such that a1 > a2 > a3 > . . ., and
the probability distribution over variables am is given by a1 ⇠ Beta(↵, 1), and p(am|am�1) /
(am)↵�1I(0  am  am�1), being I(·) the indicator function [19]. Finally, we place a beta
distribution over the transition probabilities bm of the form bm ⇠ Beta(�0,�1).

The resulting iFDM model, particularized for L = 2, is shown in Figure 1a. Note that this model
can be equivalently represented as shown in Figure 1b, using the extended states s

(e)
tm, with

s
(e)
tm =

⇥
xtm, stm, x(t�1)m, s(t�1)m, . . . , x(t�L+1)m, s(t�L+1)m

⇤
. (2)

This extended representation allows for an FFBS-based inference algorithm. However, the exponen-
tial complexity of the FFBS with the memory parameter L and with continuous-valued hidden states
xtm makes the algorithm intractable in many real scenarios. Hence, we maintain the representation
in Figure 1a because it allows us to derive an efficient inference algorithm.

The proposed iFDM in Figure 1a can be particularized to resemble some other models that have
been proposed in the literature. In particular, we recover: i) the iFHMM in [23] by choosing the
state space X = {0, 1}, xtm = stm and L = 1, ii) the ICA iFHMM in [23] if we set X = R, L = 1
and assume that p(xtm|stm = 1, x(t�1)m, s(t�1)m) = p(xtm|stm = 1) is a Gaussian distribution,
and iii) a BNP counterpart of the LDS [9] with on/off states by assuming L = 1 and X = R, and
letting the variables xtm be Gaussian distributed with linear relationships among them.

3 Inference Algorithm
We develop an inference algorithm for the proposed iFDM that can handle different dynamic and
likelihood models. Our approach relies on a blocked Gibbs sampling algorithm that alternates be-
tween sampling the number of considered chains and the global variables conditioned on the current
value of matrices S and X, and sampling matrices S and X conditioned on the current value of the
remaining variables. In particular, the algorithm proceeds iteratively as follows:

• Step 1: Add Mnew new inactive chains using an auxiliary slice variable and a slice sampling
method. In this step, the number of considered chains is increased from its initial value M+

to M‡ = M+ + Mnew (M+ is not updated because stm = 0 for all t for the new chains).

3

Alternative representation:

System memory 

ü Suitable for FFBS
X Exponential complexity with memory length

s
(e)
tm =

⇥
xtm, stm, x(t�1)m, s(t�1)m, . . . , x(t�L+1)m, s(t�L+1)m

⇤

1. Propose new sources (parallel chains). 
- Slice sampling. 
- Stick-breaking construction. 

2. Update hidden states ,      .
- Particle Gibbs with ancestor sampling. 

3. Remove inactive sources.
4. Sample global variables. 

MCMC based algorithm:

Inference
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(a) Example of the connection of particles
in PGAS. We represent P = 3 particles
xi
⌧ for ⌧ = {t�1, t, t+1}. The index ai

⌧

denotes the ancestor particle of xi
⌧ . It can

be seen that, e.g., the trajectories x1
1:t+1

and x2
1:t+1 only differ at time instant t+1.
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Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x�

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 � r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP

1 = x�
12

Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
t � Categorical(w1

t�1, . . . , wP
t�1) for i = 1, . . . , P � 15

Compute �wi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
t � Categorical( �w1

t�1|T , . . . , �wP
t�1|T )7

// Particle propagation

Draw xi
t � rt(xt|xai

t
1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x�

t9

Set xi
1:t = (x

ai
t

1:t�1, xi
t) for i = 1, . . . , P (Eq. 3)10

// Weighting

Compute the weights wi
t = Wt(x

i
1:t) for i = 1, . . . , P (Eq. 5)11

Draw k � Categorical(w1
T , . . . , wP

T )12
return xout

1:T = xk
1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its position and velocity in a two

dimensional plane, and we assume a linear Gaussian dynamic model such that, while active, xtm

evolves according to

xtm = Gxx(t�1)m + Guut =

�
��

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

�
��x(t�1)m +

�
���

T 2
s

2 0

0
T 2

s

2
Ts 0
0 Ts

�
���ut, (7)

where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received

signal strength (RSS), i.e., ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ ntj , where ntj ⇠ N (0, 2) is the noise
term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the transmitted power,
and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
In this figure, we observe that the proposed model and algorithm is able to detect the three targets and
their trajectories with an average position error of around 6 metres. We do not consider a benchmark
algorithm because, to the best of our knowledge, there are not multitarget tracking approaches in the
literature that can deal with targets that may start and stop transmitting at any time.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. More specifically, we record multiple people who are simultaneously speaking, using a
set of microphones. Given the recorded signal, the goal is to separate out the individual speech
signals. Speakers may start speaking or become silent at any given time. Similarly to [23], we
collect data from several speakers from the PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge website.1 The voice signal for each speaker consists of 4 sentences, which we append
with random pauses in between each sentence. We artificially mix the data 10 times (corresponding

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.

• Step 3: Sample the global variables in the model, which include the transition probabilities
and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ + Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
PGAS [13] is a method within the framework of particle MCMC [1] that combines the main ideas,
as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X0,S0), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M‡

m=1. We denote by the vector xi
t the state of the i-th particle at time t. We also

introduce the ancestor indexes ai
t 2 {1, . . . , P} in order to denote the particle that precedes the

i-th particle at time t. That is, ai
t corresponds to the index of the ancestor particle of xi

t. Let also
xi

1:t be the ancestral path of particle xi
t, i.e., the particle trajectory that is recursively defined as

xi
1:t = (x

ai
t

1:t�1,x
i
t). Figure 2a shows an example to clarify the notation.
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(a) Example of the connection of particles
in PGAS. We represent P = 3 particles
xi
⌧ for ⌧ = {t�1, t, t+1}. The index ai

⌧

denotes the ancestor particle of xi
⌧ . It can

be seen that, e.g., the trajectories x1
1:t+1

and x2
1:t+1 only differ at time instant t+1.
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Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x�

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 � r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP
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Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
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t�1) for i = 1, . . . , P � 15

Compute �wi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
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// Particle propagation

Draw xi
t � rt(xt|xai
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1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x�
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// Weighting

Compute the weights wi
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1:t) for i = 1, . . . , P (Eq. 5)11
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T )12
return xout
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1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
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where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received
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and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
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(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.

• Step 3: Sample the global variables in the model, which include the transition probabilities
and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ + Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
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as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X0,S0), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M‡

m=1. We denote by the vector xi
t the state of the i-th particle at time t. We also

introduce the ancestor indexes ai
t 2 {1, . . . , P} in order to denote the particle that precedes the

i-th particle at time t. That is, ai
t corresponds to the index of the ancestor particle of xi

t. Let also
xi

1:t be the ancestral path of particle xi
t, i.e., the particle trajectory that is recursively defined as

xi
1:t = (x

ai
t

1:t�1,x
i
t). Figure 2a shows an example to clarify the notation.

4

Resampling &
Ancestor sampling

ExperimentsIntroduction Bayesian Nonparametrics iFDM Experiments Conclusions

Multitarget Tracking

xtm = Gxx(t�1)m + Guut

Gx = [1 0 Ts 0; 0 1 0 Ts ;0 0 1 0; 0 0 0 1] Gu =


T 2

s

2
0; 0

T 2
s

2
; Ts 0; 0Ts

�

0 200 400 600 800
0

200

400

600

800 Target 1
Target 2
Target 3
Inferred Target 1 
Inferred Target 2 
Inferred Target 3
Sensors

Time
0 100 200 300

Er
ro

r (
m

)

0

5

10

15

20

25

30

35
Target 1
Target 2
Target 3

iFDM Genie-aided
Target 1 7.0 4.8
Target 2 5.9 6.0
Target 3 6.3 5.4
Average 6.4 5.9

11 / 14

1. Multi-target tracking

xtm =

2
664

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

3
775x(t�1)m +

2
6664

T 2
s

2 0

0
T 2

s

2
Ts 0
0 Ts

3
7775ut,270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Application Model X p(xtm|stm = 1, x(t�1)m, s(t�1)m = 1) L

Multitarget Tracking Infinite factorial LDS R4 N (xtm|Gxx(t�1)m, GuG>
u ) 1

Cocktail Party ICA iFHMM R N (xtm|0,�2
x) 1

Power Dissagregation Non-binary iFHMM {0, 1, . . . , Q � 1} am
jk = p(xtm = k|x(t�1)m = j) 1

Multiuser Detection � AS{0} U(A) 2 N
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Figure 3: Results for the multitarget tracking problem.

(RSS), where the measurement of sensor j at time t is given by ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ntj .
Here, ntj ⇠ N (0, 2) is the noise term, dmjt is the distance between target m and sensor j at time t,
P0 = 10 is the transmitted power, and d0 = 100 metres and � = 2 are, respectively, the reference
distance and the path loss exponent, which account for the radio propagation model. In our inference
algorithm, we sample the noise variance by placing an InvGamma(1,1) distribution as its prior. Since
the existing BNP approaches cannot handle the dynamical model in Eq. 7, that is, where xtm 2 R4

depends on x(t�1)m, we compare the performance of the iFDM with a ‘genie-aided’ finite factorial
model with perfect knowledge of the number of targets and noise variance.

In Figures 3a and 3b, we show the true and inferred trajectories of the targets, and the temporal
evolution of the position error of the iFDM. Additionally, Figure 3c shows the average position error
(in absolute value) for our iFDM and the genie-aided method. In these figures, we observe that the
proposed model and algorithm is able to detect the three targets and their trajectories, providing
similar performance to the genie-aided method. In particular, both approaches provide average
position errors of around 6 metres, which is thrice the noise variance.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. Given the recorded audio signals from a set of microphones, the goal is to separate out the
individual speech signals of multiple people who are speaking simultaneously. Speakers may start
speaking or become silent at any time. Similarly to [22], we collect data from several speakers from
the PASCAL ‘CHiME’ Speech Separation and Recognition Challenge website.1 The voice signal
for each speaker consists of 4 sentences, which we append with random pauses in between each sen-
tence. We artificially mix the data 10 times (corresponding to 10 microphones) with mixing weights
sampled from Uniform(0, 1), such that each microphone receives a linear combination of all the con-
sidered signals, corrupted by Gaussian noise with standard deviation 0.3. We consider two scenarios,
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datapoints, respectively. Following [22], our model assumes p(xtm|stm = 1, x(t�1)m, s(t�1)m) =
N (xtm|0, 2), and xtm = 0 whenever stm = 0. We also model yt as a linear combination of all
the voice signals under Gaussian noise, i.e., yt =

PM+

m=1 wmxtm + nt, where nt ⇠ N (0,�2
yI)

is the noise term, wm ⇠ N (0, I) is the 10-dimensional weighting vector associated to the m-th
speaker, and �2

y ⇠ InvGamma(1, 1). We compare our iFDM with the ICA iFHMM in [22] using
FFBS sweeps for inference, with (i) p(xtm|stm = 1) = N (xtm|0, 2) (denoted as FFBS-G), and (ii)
p(xtm|stm = 1) = Laplace(xtm|0, 2) (denoted as FFBS-L).

For the scenario with 5 speakers, we show the true and the inferred (after iteration 10, 000) number
of speakers in Figures 4a, 4b, 4c and 4d, along with their activities during the observation period. In
order to quantitatively evaluate the performance of the different algorithms, we show in Figure 4e
(top) the activity detection error rate (ADER), which is computed as the probability of detecting
activity (inactivity) of a speaker while that speaker is actually inactive (active). As the algorithms
are unsupervised, we sort the estimated chains so that the ADER is minimized. If the inferred
number of speakers M+ is smaller (larger) than the true number of speakers, we consider some

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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Table 2: Accuracy for the power disaggregation problem.

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and
the power draw of each individual device [11, 7]. We validate the performance of the iFDM on
two different real databases: the Reference Energy Disaggregation Data Set (REDD) [11], and the
Almanac of Minutely Power Dataset (AMP) [15]. For the AMP database, we consider two 24-hour
segments and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses
and 6 devices. Our model assumes that each device can take Q = 4 different states (one inactive
state and three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with
xtm = 0 if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors
of the form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m =

j, s(t�1)m). When xtm = 0, the power consumption of device m at time t is zero (Pm
0 = 0), and

when xtm 2 {1, . . . , Q�1} its average power consumption is given by Pm
xtm

. Thus, the total power
consumption is given by yt =

PM+

m=1 Pm
xtm

+ nt, where nt ⇠ N (0, 0.5) represents the additive
Gaussian noise. For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10).
In this case, the proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we
can also apply the FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of

the estimated consumption of each device (higher is better), i.e., acc = 1�
PT

t=1

PM
m=1 |x(m)

t �x̂
(m)
t |

2
PT

t=1

PM
m=1 x

(m)
t

,

where x
(m)
t and x̂

(m)
t = Pm

xtm
are, respectively, the true and the estimated power consumption by

device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂

(m)
t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p

2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
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gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
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and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
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extra inferred inactive chains (additional speakers). The PGAS-based approach outperforms the two
FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
overestimate the number of speakers, as shown in Figure 4e (bottom).

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and the
power draw of each individual device [6]. We validate the performance of the iFDM on two different
real databases: the Reference Energy Disaggregation Data Set (REDD) [10], and the Almanac of
Minutely Power Dataset (AMP) [14]. For the AMP database, we consider two 24-hour segments
and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses and 6
devices. Our model assumes that each device can take Q = 4 different states (one inactive state and
three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with xtm = 0
if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors of the
form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m = j, s(t�1)m).

When xtm = 0, the power consumption of device m at time t is zero (Pm
0 = 0), and when xtm 2

{1, . . . , Q�1} its average power consumption is given by Pm
xtm

. Thus, the total power consumption
is given by yt =

PM+

m=1 Pm
xtm

+ nt, where nt ⇠ N (0, 0.5) represents the additive Gaussian noise.
For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10). In this case, the
proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we can also apply the
FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of
the estimated consumption of each device (higher is better), which is measured as [10]
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where x
(m)
t and x̂

(m)
t = Pm

xtm
are, respectively, the true and the estimated power consumption by

device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂

(m)
t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
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other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
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extra inferred inactive chains (additional speakers). The PGAS-based approach outperforms the two
FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
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Figure 5: Plane of the office building at Bell Labs Crawford Hill.

Model L
1 2 3 4 5

iFDM 6/6 6/6 6/6 6/6 6/6
iFHMM 3/11 3/11 3/8 1/10 �

(a) # Recovered transmitters / Inferred M+.

Model L
1 2 3 4 5

iFDM 2.58 2.51 0.80 0.30 0.16
iFHMM 2.79 1.38 5.53 1.90 �

(b) MSE of the channel coefficients (⇥10�6).

Table 3: Results for the multiuser detection problem.

gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p

2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
The observations of all the receivers are weighted replicas of the transmitted symbols under noise,
yt =

PM+

m=1

PL
`=1 hm

` x(t�`+1)m + nt, where xtm = 0 for the inactive states, and the chan-
nel coefficients hm

` and noise variance �2
y are provided by WISE software. For inference, we as-

sume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaussian
prior distribution over the channel coefficients, hm

` |�2
` ⇠ CN (0,�2

` I,0), and over the noise term,
nt ⇠ CN (0,�2

yI,0). We place an inverse gamma prior over �2
` with mean and standard deviation

0.01e�0.5(`�1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm

` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1

6⇥12

P
m ||hm

1 �bhm
1 ||2, being bhm

` the inferred channel coefficients. We sort the transmitters
so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.
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and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
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0.01e�0.5(`�1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm

` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1
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1 ||2, being bhm

` the inferred channel coefficients. We sort the transmitters
so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.
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FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
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We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
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outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.
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We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
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period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1

6⇥12
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m ||hm

1 �bhm
1 ||2, being bhm

` the inferred channel coefficients. We sort the transmitters
so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.
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Figure 5: Map of the considered office building..
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of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.

8

Introduction Bayesian Nonparametrics iFDM Experiments Conclusions

Infinite Factorial Finite State Machine

I stm 2 {0, 1}: m-th transmitter
is active at time t.
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üGeneral BNP model for source separation:
- Infers number of sources from data.
- Valid for a wide range of applications.

üEfficient inference.
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• Pick a large enough #sources.

• Model selection (AIC, BIC).

• Bayesian model selection.

• BNP:

- Model complexity grows with data size.
- Unbounded #sources.
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I Pick a large enough #sources.

I Model selection (AIC, BIC).

I Bayesian model selection.

I BNP:
I Prior over infinite-dimensional parameter space.
I Model complexity grows with data size.
I Unbounded #sources.
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stm 2 {0, 1}• Source activity:

• Dynamic system model:
q Source state:

q Observation model:

System memory: 

• On-off transitions:
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Figure 1: (a) Graphical representation of the iFDM with memory length L = 2. The dashed lines
represent the memory. (b) Equivalent representation using extended states.

where X and S are T ⇥ M matrices containing all the states xtm and stm, respectively. We remark
that the likelihood of yt cannot depend on any hidden state x⌧m if s⌧m = 0.

In order to be able to deal with an infinite number of sources, we place a BNP prior over the binary
matrix S that contains all variables stm. In particular, we assume that S ⇠ mIBP(↵,�0,�1), i.e., S
is distributed as a mIBP [23] with parameters ↵, �0 and �1. The mIBP places a prior distribution
over binary matrices with a finite number of rows T and an infinite number of columns M , in which
each row represents a time instant, and each column represents a Markov chain. The mIBP ensures
that, for any finite value of T , only a finite number of columns M+ in S are active almost surely,
whereas the rest of them remain in the all-zero state and do not influence the observations. We
make use of the stick-breaking construction of the mIBP, which is particularly useful to develop
many practical inference algorithms [19, 23]. Under the stick-breaking construction, two hidden
variables for each Markov chain are introduced, representing the transition probabilities between
the active and inactive states. In particular, we define am = p(stm = 1|s(t�1)m = 0) as the
transition probability from inactive to active, and bm = p(stm = 1|s(t�1)m = 1) as the self-
transition probability of the active state of the m-th chain. In the stick-breaking representation, the
columns of S are ordered according to their values of am, such that a1 > a2 > a3 > . . ., and
the probability distribution over variables am is given by a1 ⇠ Beta(↵, 1), and p(am|am�1) /
(am)↵�1I(0  am  am�1), being I(·) the indicator function [19]. Finally, we place a beta
distribution over the transition probabilities bm of the form bm ⇠ Beta(�0,�1).

The resulting iFDM model, particularized for L = 2, is shown in Figure 1a. Note that this model
can be equivalently represented as shown in Figure 1b, using the extended states s

(e)
tm, with

s
(e)
tm =

⇥
xtm, stm, x(t�1)m, s(t�1)m, . . . , x(t�L+1)m, s(t�L+1)m

⇤
. (2)

This extended representation allows for an FFBS-based inference algorithm. However, the exponen-
tial complexity of the FFBS with the memory parameter L and with continuous-valued hidden states
xtm makes the algorithm intractable in many real scenarios. Hence, we maintain the representation
in Figure 1a because it allows us to derive an efficient inference algorithm.

The proposed iFDM in Figure 1a can be particularized to resemble some other models that have
been proposed in the literature. In particular, we recover: i) the iFHMM in [23] by choosing the
state space X = {0, 1}, xtm = stm and L = 1, ii) the ICA iFHMM in [23] if we set X = R, L = 1
and assume that p(xtm|stm = 1, x(t�1)m, s(t�1)m) = p(xtm|stm = 1) is a Gaussian distribution,
and iii) a BNP counterpart of the LDS [9] with on/off states by assuming L = 1 and X = R, and
letting the variables xtm be Gaussian distributed with linear relationships among them.

3 Inference Algorithm
We develop an inference algorithm for the proposed iFDM that can handle different dynamic and
likelihood models. Our approach relies on a blocked Gibbs sampling algorithm that alternates be-
tween sampling the number of considered chains and the global variables conditioned on the current
value of matrices S and X, and sampling matrices S and X conditioned on the current value of the
remaining variables. In particular, the algorithm proceeds iteratively as follows:

• Step 1: Add Mnew new inactive chains using an auxiliary slice variable and a slice sampling
method. In this step, the number of considered chains is increased from its initial value M+

to M‡ = M+ + Mnew (M+ is not updated because stm = 0 for all t for the new chains).

3

Alternative representation:

System memory 

ü Suitable for FFBS
X Exponential complexity with memory length

s
(e)
tm =

⇥
xtm, stm, x(t�1)m, s(t�1)m, . . . , x(t�L+1)m, s(t�L+1)m

⇤

1. Propose new sources (parallel chains). 
- Slice sampling. 
- Stick-breaking construction. 

2. Update hidden states ,      .
- Particle Gibbs with ancestor sampling. 

3. Remove inactive sources.
4. Sample global variables. 

MCMC based algorithm:

Inference
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(a) Example of the connection of particles
in PGAS. We represent P = 3 particles
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⌧ . It can

be seen that, e.g., the trajectories x1
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and x2
1:t+1 only differ at time instant t+1.
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Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x�

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 � r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP

1 = x�
12

Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
t � Categorical(w1

t�1, . . . , wP
t�1) for i = 1, . . . , P � 15

Compute �wi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
t � Categorical( �w1

t�1|T , . . . , �wP
t�1|T )7

// Particle propagation

Draw xi
t � rt(xt|xai

t
1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x�

t9

Set xi
1:t = (x

ai
t

1:t�1, xi
t) for i = 1, . . . , P (Eq. 3)10

// Weighting

Compute the weights wi
t = Wt(x

i
1:t) for i = 1, . . . , P (Eq. 5)11

Draw k � Categorical(w1
T , . . . , wP

T )12
return xout

1:T = xk
1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its position and velocity in a two

dimensional plane, and we assume a linear Gaussian dynamic model such that, while active, xtm

evolves according to

xtm = Gxx(t�1)m + Guut =

�
��

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

�
��x(t�1)m +

�
���

T 2
s

2 0

0
T 2

s

2
Ts 0
0 Ts

�
���ut, (7)

where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received

signal strength (RSS), i.e., ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ ntj , where ntj ⇠ N (0, 2) is the noise
term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the transmitted power,
and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
In this figure, we observe that the proposed model and algorithm is able to detect the three targets and
their trajectories with an average position error of around 6 metres. We do not consider a benchmark
algorithm because, to the best of our knowledge, there are not multitarget tracking approaches in the
literature that can deal with targets that may start and stop transmitting at any time.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. More specifically, we record multiple people who are simultaneously speaking, using a
set of microphones. Given the recorded signal, the goal is to separate out the individual speech
signals. Speakers may start speaking or become silent at any given time. Similarly to [23], we
collect data from several speakers from the PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge website.1 The voice signal for each speaker consists of 4 sentences, which we append
with random pauses in between each sentence. We artificially mix the data 10 times (corresponding

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.

• Step 3: Sample the global variables in the model, which include the transition probabilities
and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ + Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
PGAS [13] is a method within the framework of particle MCMC [1] that combines the main ideas,
as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X0,S0), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M‡

m=1. We denote by the vector xi
t the state of the i-th particle at time t. We also

introduce the ancestor indexes ai
t 2 {1, . . . , P} in order to denote the particle that precedes the

i-th particle at time t. That is, ai
t corresponds to the index of the ancestor particle of xi

t. Let also
xi

1:t be the ancestral path of particle xi
t, i.e., the particle trajectory that is recursively defined as

xi
1:t = (x

ai
t

1:t�1,x
i
t). Figure 2a shows an example to clarify the notation.
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(a) Example of the connection of particles
in PGAS. We represent P = 3 particles
xi
⌧ for ⌧ = {t�1, t, t+1}. The index ai

⌧

denotes the ancestor particle of xi
⌧ . It can

be seen that, e.g., the trajectories x1
1:t+1

and x2
1:t+1 only differ at time instant t+1.
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Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x�

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 � r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP

1 = x�
12

Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
t � Categorical(w1

t�1, . . . , wP
t�1) for i = 1, . . . , P � 15

Compute �wi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
t � Categorical( �w1

t�1|T , . . . , �wP
t�1|T )7

// Particle propagation

Draw xi
t � rt(xt|xai

t
1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x�

t9

Set xi
1:t = (x

ai
t

1:t�1, xi
t) for i = 1, . . . , P (Eq. 3)10

// Weighting

Compute the weights wi
t = Wt(x

i
1:t) for i = 1, . . . , P (Eq. 5)11

Draw k � Categorical(w1
T , . . . , wP

T )12
return xout

1:T = xk
1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its position and velocity in a two

dimensional plane, and we assume a linear Gaussian dynamic model such that, while active, xtm

evolves according to

xtm = Gxx(t�1)m + Guut =

�
��

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

�
��x(t�1)m +

�
���

T 2
s

2 0

0
T 2

s

2
Ts 0
0 Ts

�
���ut, (7)

where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received

signal strength (RSS), i.e., ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ ntj , where ntj ⇠ N (0, 2) is the noise
term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the transmitted power,
and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
In this figure, we observe that the proposed model and algorithm is able to detect the three targets and
their trajectories with an average position error of around 6 metres. We do not consider a benchmark
algorithm because, to the best of our knowledge, there are not multitarget tracking approaches in the
literature that can deal with targets that may start and stop transmitting at any time.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. More specifically, we record multiple people who are simultaneously speaking, using a
set of microphones. Given the recorded signal, the goal is to separate out the individual speech
signals. Speakers may start speaking or become silent at any given time. Similarly to [23], we
collect data from several speakers from the PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge website.1 The voice signal for each speaker consists of 4 sentences, which we append
with random pauses in between each sentence. We artificially mix the data 10 times (corresponding

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.

• Step 3: Sample the global variables in the model, which include the transition probabilities
and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ + Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
PGAS [13] is a method within the framework of particle MCMC [1] that combines the main ideas,
as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X0,S0), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M‡

m=1. We denote by the vector xi
t the state of the i-th particle at time t. We also

introduce the ancestor indexes ai
t 2 {1, . . . , P} in order to denote the particle that precedes the

i-th particle at time t. That is, ai
t corresponds to the index of the ancestor particle of xi

t. Let also
xi

1:t be the ancestral path of particle xi
t, i.e., the particle trajectory that is recursively defined as

xi
1:t = (x

ai
t

1:t�1,x
i
t). Figure 2a shows an example to clarify the notation.
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Application Model X p(xtm|stm = 1, x(t�1)m, s(t�1)m = 1) L

Multitarget Tracking Infinite factorial LDS R4 N (xtm|Gxx(t�1)m, GuG>
u ) 1

Cocktail Party ICA iFHMM R N (xtm|0,�2
x) 1

Power Dissagregation Non-binary iFHMM {0, 1, . . . , Q � 1} am
jk = p(xtm = k|x(t�1)m = j) 1

Multiuser Detection � AS{0} U(A) 2 N

Table 1: Applications of the iFDM.
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Figure 3: Results for the multitarget tracking problem.

(RSS), where the measurement of sensor j at time t is given by ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ntj .
Here, ntj ⇠ N (0, 2) is the noise term, dmjt is the distance between target m and sensor j at time t,
P0 = 10 is the transmitted power, and d0 = 100 metres and � = 2 are, respectively, the reference
distance and the path loss exponent, which account for the radio propagation model. In our inference
algorithm, we sample the noise variance by placing an InvGamma(1,1) distribution as its prior. Since
the existing BNP approaches cannot handle the dynamical model in Eq. 7, that is, where xtm 2 R4

depends on x(t�1)m, we compare the performance of the iFDM with a ‘genie-aided’ finite factorial
model with perfect knowledge of the number of targets and noise variance.

In Figures 3a and 3b, we show the true and inferred trajectories of the targets, and the temporal
evolution of the position error of the iFDM. Additionally, Figure 3c shows the average position error
(in absolute value) for our iFDM and the genie-aided method. In these figures, we observe that the
proposed model and algorithm is able to detect the three targets and their trajectories, providing
similar performance to the genie-aided method. In particular, both approaches provide average
position errors of around 6 metres, which is thrice the noise variance.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. Given the recorded audio signals from a set of microphones, the goal is to separate out the
individual speech signals of multiple people who are speaking simultaneously. Speakers may start
speaking or become silent at any time. Similarly to [22], we collect data from several speakers from
the PASCAL ‘CHiME’ Speech Separation and Recognition Challenge website.1 The voice signal
for each speaker consists of 4 sentences, which we append with random pauses in between each sen-
tence. We artificially mix the data 10 times (corresponding to 10 microphones) with mixing weights
sampled from Uniform(0, 1), such that each microphone receives a linear combination of all the con-
sidered signals, corrupted by Gaussian noise with standard deviation 0.3. We consider two scenarios,
with 5 and 15 speakers, and subsample the data so that we learn from T = 1, 354 and T = 1, 087
datapoints, respectively. Following [22], our model assumes p(xtm|stm = 1, x(t�1)m, s(t�1)m) =
N (xtm|0, 2), and xtm = 0 whenever stm = 0. We also model yt as a linear combination of all
the voice signals under Gaussian noise, i.e., yt =

PM+

m=1 wmxtm + nt, where nt ⇠ N (0,�2
yI)

is the noise term, wm ⇠ N (0, I) is the 10-dimensional weighting vector associated to the m-th
speaker, and �2

y ⇠ InvGamma(1, 1). We compare our iFDM with the ICA iFHMM in [22] using
FFBS sweeps for inference, with (i) p(xtm|stm = 1) = N (xtm|0, 2) (denoted as FFBS-G), and (ii)
p(xtm|stm = 1) = Laplace(xtm|0, 2) (denoted as FFBS-L).

For the scenario with 5 speakers, we show the true and the inferred (after iteration 10, 000) number
of speakers in Figures 4a, 4b, 4c and 4d, along with their activities during the observation period. In
order to quantitatively evaluate the performance of the different algorithms, we show in Figure 4e
(top) the activity detection error rate (ADER), which is computed as the probability of detecting
activity (inactivity) of a speaker while that speaker is actually inactive (active). As the algorithms
are unsupervised, we sort the estimated chains so that the ADER is minimized. If the inferred
number of speakers M+ is smaller (larger) than the true number of speakers, we consider some

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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Figure 4: Results for the cocktail party problem.

Algorithm H. 1 H. 2 H. 3 H. 4 H. 5
PGAS 0.68 0.79 0.60 0.58 0.55
FFBS 0.59 0.78 0.56 0.53 0.43

(a) REDD (‘H’ stands for ‘House’).

Algorithm Day 1 Day 2
PGAS 0.76 0.82
FFBS 0.67 0.72

(b) AMP.

Table 2: Accuracy for the power disaggregation problem.

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and
the power draw of each individual device [11, 7]. We validate the performance of the iFDM on
two different real databases: the Reference Energy Disaggregation Data Set (REDD) [11], and the
Almanac of Minutely Power Dataset (AMP) [15]. For the AMP database, we consider two 24-hour
segments and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses
and 6 devices. Our model assumes that each device can take Q = 4 different states (one inactive
state and three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with
xtm = 0 if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors
of the form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m =

j, s(t�1)m). When xtm = 0, the power consumption of device m at time t is zero (Pm
0 = 0), and

when xtm 2 {1, . . . , Q�1} its average power consumption is given by Pm
xtm

. Thus, the total power
consumption is given by yt =

PM+

m=1 Pm
xtm

+ nt, where nt ⇠ N (0, 0.5) represents the additive
Gaussian noise. For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10).
In this case, the proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we
can also apply the FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of

the estimated consumption of each device (higher is better), i.e., acc = 1�
PT

t=1

PM
m=1 |x(m)

t �x̂
(m)
t |

2
PT

t=1

PM
m=1 x

(m)
t

,

where x
(m)
t and x̂

(m)
t = Pm

xtm
are, respectively, the true and the estimated power consumption by

device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂

(m)
t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p

2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
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Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and
the power draw of each individual device [11, 7]. We validate the performance of the iFDM on
two different real databases: the Reference Energy Disaggregation Data Set (REDD) [11], and the
Almanac of Minutely Power Dataset (AMP) [15]. For the AMP database, we consider two 24-hour
segments and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses
and 6 devices. Our model assumes that each device can take Q = 4 different states (one inactive
state and three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with
xtm = 0 if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors
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0 = 0), and
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+ nt, where nt ⇠ N (0, 0.5) represents the additive
Gaussian noise. For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm
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In this case, the proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we
can also apply the FFBS algorithm to infer the power consumption draws of each device.
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device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂

(m)
t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p
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}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
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Table 2: Accuracy for the power disaggregation problem.

extra inferred inactive chains (additional speakers). The PGAS-based approach outperforms the two
FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
overestimate the number of speakers, as shown in Figure 4e (bottom).

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and the
power draw of each individual device [6]. We validate the performance of the iFDM on two different
real databases: the Reference Energy Disaggregation Data Set (REDD) [10], and the Almanac of
Minutely Power Dataset (AMP) [14]. For the AMP database, we consider two 24-hour segments
and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses and 6
devices. Our model assumes that each device can take Q = 4 different states (one inactive state and
three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with xtm = 0
if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors of the
form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m = j, s(t�1)m).

When xtm = 0, the power consumption of device m at time t is zero (Pm
0 = 0), and when xtm 2

{1, . . . , Q�1} its average power consumption is given by Pm
xtm

. Thus, the total power consumption
is given by yt =

PM+

m=1 Pm
xtm

+ nt, where nt ⇠ N (0, 0.5) represents the additive Gaussian noise.
For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10). In this case, the
proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we can also apply the
FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of
the estimated consumption of each device (higher is better), which is measured as [10]
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of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
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FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
overestimate the number of speakers, as shown in Figure 4e (bottom).
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FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
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proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we can also apply the
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number of devices, we use x̂

(m)
t = 0 for the undetected devices. If M+ is larger than the true number
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show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.
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Figure 5: Plane of the office building at Bell Labs Crawford Hill.

Model L
1 2 3 4 5

iFDM 6/6 6/6 6/6 6/6 6/6
iFHMM 3/11 3/11 3/8 1/10 �

(a) # Recovered transmitters / Inferred M+.

Model L
1 2 3 4 5

iFDM 2.58 2.51 0.80 0.30 0.16
iFHMM 2.79 1.38 5.53 1.90 �

(b) MSE of the channel coefficients (⇥10�6).

Table 3: Results for the multiuser detection problem.

gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p

2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
The observations of all the receivers are weighted replicas of the transmitted symbols under noise,
yt =

PM+

m=1

PL
`=1 hm

` x(t�`+1)m + nt, where xtm = 0 for the inactive states, and the chan-
nel coefficients hm

` and noise variance �2
y are provided by WISE software. For inference, we as-

sume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaussian
prior distribution over the channel coefficients, hm

` |�2
` ⇠ CN (0,�2

` I,0), and over the noise term,
nt ⇠ CN (0,�2

yI,0). We place an inverse gamma prior over �2
` with mean and standard deviation

0.01e�0.5(`�1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm

` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1

6⇥12

P
m ||hm

1 �bhm
1 ||2, being bhm

` the inferred channel coefficients. We sort the transmitters
so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.
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compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
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We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
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consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
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algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
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we recover all the transmitted symbols with no error) found after running the inference algorithms,
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FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
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we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
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I stm 2 {0, 1}: m-th transmitter
is active at time t.

I xtm: transmitted symbols.

xtm|stm ⇠
⇢

�0(xtm) if stm = 0,
Discrete(A) if stm = 1,

I A: constellation.

I nt : additive noise.

nt ⇠ CN (0,�2
y ID , 0).

I h`
m: channel coe�cients.

h`
m|�2

` ⇠ CN (0,�2
` ID , 0) ! Rayleigh fading

Introduction Bayesian Nonparametrics Contributions Conclusions

Multiuser Communication System

Multipath propagation Gaussian observation model

yt =

M+�

m=1

L�

�=1

h�
mx(t��+1)m + nt

� am

s0m s1m sTm. . .

�0,�1 bm

x0m x1m xTmx2m x3m . . .

s2m s3m

. . .y1 y2 y3 yT

m = 1, . . . ,�

�2
y

� = 1, . . . , L

�2
� h�

m

�2
H ,�,�
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Accuracy

Sources with continuous states

Contributions
üExtension of the infinite factorial HMM:

- Discrete or continuous hidden states.
- System memory.

üInference based on PMCMC:
- Better mixing than standard forward-

filtering backward-sampling.
- Avoids exponential complexity.

üExperiments on 4 relevant applications. Sources with discrete states

Source 1

IFDM Francisco Ruiz (Columbia University) 2 / 6



Infinite Factorial Dynamical Model

Motivation

0 5 10 15 20 25 30 35
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Source 2

Mixture
Source

Separation ?Source 1

Introduction Bayesian Nonparametrics iFDM Experiments Conclusions

Infinite Factorial Finite State Machine

Multipath Propagation.

Introduction Bayesian Nonparametrics Contributions Conclusions

Multiuser Communication System

Multipath propagation Gaussian observation model

yt =

M+�

m=1

L�

�=1

h�
mx(t��+1)m + nt

� am

s0m s1m sTm. . .

�0,�1 bm

x0m x1m xTmx2m x3m . . .

s2m s3m

. . .y1 y2 y3 yT

m = 1, . . . ,�

�2
y

� = 1, . . . , L

�2
� h�

m

�2
H ,�,�
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Source SeparationSummary

Infinite Factorial Dynamical Model
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Infinite Factorial Dynamical Model
Isabel	Valera,	Francisco	J.	R.	Ruiz,	Lennart Svensson,	Fernando	Perez-Cruz

üGeneral BNP model for source separation:
- Infers number of sources from data.
- Valid for a wide range of applications.

üEfficient inference.
- Valid for many likelihood and dynamical

models.
üComprehensive set of experiments. 
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Multitarget Tracking
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Why BNP?

• Pick a large enough #sources.

• Model selection (AIC, BIC).

• Bayesian model selection.

• BNP:

- Model complexity grows with data size.
- Unbounded #sources.
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I Pick a large enough #sources.

I Model selection (AIC, BIC).

I Bayesian model selection.

I BNP:
I Prior over infinite-dimensional parameter space.
I Model complexity grows with data size.
I Unbounded #sources.

4 / 14

Multi-target tracking Cocktail party
Power

disaggregation
Multi-user
detection

stm 2 {0, 1}• Source activity:

• Dynamic system model:
q Source state:

q Observation model:

System memory: 

• On-off transitions:
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. . .y1 y2 y3 yT

m = 1, . . . ,1q Infinite # of sources: S ⇠ mIBP(↵,�0,�1)

xtm 2 X

am = p(stm = 1|s(t�1)m = 0)

bm = p(stm = 1|s(t�1)m = 1)

p(xtm|stm, x(t�1)m, s(t�1)m)
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Echo, reverberation, multipath propagation, etc.
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Figure 1: (a) Graphical representation of the iFDM with memory length L = 2. The dashed lines
represent the memory. (b) Equivalent representation using extended states.

where X and S are T ⇥ M matrices containing all the states xtm and stm, respectively. We remark
that the likelihood of yt cannot depend on any hidden state x⌧m if s⌧m = 0.

In order to be able to deal with an infinite number of sources, we place a BNP prior over the binary
matrix S that contains all variables stm. In particular, we assume that S ⇠ mIBP(↵,�0,�1), i.e., S
is distributed as a mIBP [23] with parameters ↵, �0 and �1. The mIBP places a prior distribution
over binary matrices with a finite number of rows T and an infinite number of columns M , in which
each row represents a time instant, and each column represents a Markov chain. The mIBP ensures
that, for any finite value of T , only a finite number of columns M+ in S are active almost surely,
whereas the rest of them remain in the all-zero state and do not influence the observations. We
make use of the stick-breaking construction of the mIBP, which is particularly useful to develop
many practical inference algorithms [19, 23]. Under the stick-breaking construction, two hidden
variables for each Markov chain are introduced, representing the transition probabilities between
the active and inactive states. In particular, we define am = p(stm = 1|s(t�1)m = 0) as the
transition probability from inactive to active, and bm = p(stm = 1|s(t�1)m = 1) as the self-
transition probability of the active state of the m-th chain. In the stick-breaking representation, the
columns of S are ordered according to their values of am, such that a1 > a2 > a3 > . . ., and
the probability distribution over variables am is given by a1 ⇠ Beta(↵, 1), and p(am|am�1) /
(am)↵�1I(0  am  am�1), being I(·) the indicator function [19]. Finally, we place a beta
distribution over the transition probabilities bm of the form bm ⇠ Beta(�0,�1).

The resulting iFDM model, particularized for L = 2, is shown in Figure 1a. Note that this model
can be equivalently represented as shown in Figure 1b, using the extended states s

(e)
tm, with

s
(e)
tm =

⇥
xtm, stm, x(t�1)m, s(t�1)m, . . . , x(t�L+1)m, s(t�L+1)m

⇤
. (2)

This extended representation allows for an FFBS-based inference algorithm. However, the exponen-
tial complexity of the FFBS with the memory parameter L and with continuous-valued hidden states
xtm makes the algorithm intractable in many real scenarios. Hence, we maintain the representation
in Figure 1a because it allows us to derive an efficient inference algorithm.

The proposed iFDM in Figure 1a can be particularized to resemble some other models that have
been proposed in the literature. In particular, we recover: i) the iFHMM in [23] by choosing the
state space X = {0, 1}, xtm = stm and L = 1, ii) the ICA iFHMM in [23] if we set X = R, L = 1
and assume that p(xtm|stm = 1, x(t�1)m, s(t�1)m) = p(xtm|stm = 1) is a Gaussian distribution,
and iii) a BNP counterpart of the LDS [9] with on/off states by assuming L = 1 and X = R, and
letting the variables xtm be Gaussian distributed with linear relationships among them.

3 Inference Algorithm
We develop an inference algorithm for the proposed iFDM that can handle different dynamic and
likelihood models. Our approach relies on a blocked Gibbs sampling algorithm that alternates be-
tween sampling the number of considered chains and the global variables conditioned on the current
value of matrices S and X, and sampling matrices S and X conditioned on the current value of the
remaining variables. In particular, the algorithm proceeds iteratively as follows:

• Step 1: Add Mnew new inactive chains using an auxiliary slice variable and a slice sampling
method. In this step, the number of considered chains is increased from its initial value M+

to M‡ = M+ + Mnew (M+ is not updated because stm = 0 for all t for the new chains).

3

Alternative representation:

System memory 

ü Suitable for FFBS
X Exponential complexity with memory length

s
(e)
tm =

⇥
xtm, stm, x(t�1)m, s(t�1)m, . . . , x(t�L+1)m, s(t�L+1)m

⇤

1. Propose new sources (parallel chains). 
- Slice sampling. 
- Stick-breaking construction. 

2. Update hidden states ,      .
- Particle Gibbs with ancestor sampling. 

3. Remove inactive sources.
4. Sample global variables. 

MCMC based algorithm:

Inference
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(a) Example of the connection of particles
in PGAS. We represent P = 3 particles
xi
⌧ for ⌧ = {t�1, t, t+1}. The index ai

⌧

denotes the ancestor particle of xi
⌧ . It can

be seen that, e.g., the trajectories x1
1:t+1

and x2
1:t+1 only differ at time instant t+1.
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Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x�

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 � r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP

1 = x�
12

Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
t � Categorical(w1

t�1, . . . , wP
t�1) for i = 1, . . . , P � 15

Compute �wi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
t � Categorical( �w1

t�1|T , . . . , �wP
t�1|T )7

// Particle propagation

Draw xi
t � rt(xt|xai

t
1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x�

t9

Set xi
1:t = (x

ai
t

1:t�1, xi
t) for i = 1, . . . , P (Eq. 3)10

// Weighting

Compute the weights wi
t = Wt(x

i
1:t) for i = 1, . . . , P (Eq. 5)11

Draw k � Categorical(w1
T , . . . , wP

T )12
return xout

1:T = xk
1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its position and velocity in a two

dimensional plane, and we assume a linear Gaussian dynamic model such that, while active, xtm

evolves according to

xtm = Gxx(t�1)m + Guut =

�
��

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

�
��x(t�1)m +

�
���

T 2
s

2 0

0
T 2

s

2
Ts 0
0 Ts

�
���ut, (7)

where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received

signal strength (RSS), i.e., ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ ntj , where ntj ⇠ N (0, 2) is the noise
term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the transmitted power,
and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
In this figure, we observe that the proposed model and algorithm is able to detect the three targets and
their trajectories with an average position error of around 6 metres. We do not consider a benchmark
algorithm because, to the best of our knowledge, there are not multitarget tracking approaches in the
literature that can deal with targets that may start and stop transmitting at any time.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. More specifically, we record multiple people who are simultaneously speaking, using a
set of microphones. Given the recorded signal, the goal is to separate out the individual speech
signals. Speakers may start speaking or become silent at any given time. Similarly to [23], we
collect data from several speakers from the PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge website.1 The voice signal for each speaker consists of 4 sentences, which we append
with random pauses in between each sentence. We artificially mix the data 10 times (corresponding

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.

• Step 3: Sample the global variables in the model, which include the transition probabilities
and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ + Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
PGAS [13] is a method within the framework of particle MCMC [1] that combines the main ideas,
as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X0,S0), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M‡

m=1. We denote by the vector xi
t the state of the i-th particle at time t. We also

introduce the ancestor indexes ai
t 2 {1, . . . , P} in order to denote the particle that precedes the

i-th particle at time t. That is, ai
t corresponds to the index of the ancestor particle of xi

t. Let also
xi

1:t be the ancestral path of particle xi
t, i.e., the particle trajectory that is recursively defined as

xi
1:t = (x

ai
t

1:t�1,x
i
t). Figure 2a shows an example to clarify the notation.
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in PGAS. We represent P = 3 particles
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⌧ for ⌧ = {t�1, t, t+1}. The index ai
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denotes the ancestor particle of xi
⌧ . It can

be seen that, e.g., the trajectories x1
1:t+1

and x2
1:t+1 only differ at time instant t+1.
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Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x�

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 � r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP

1 = x�
12

Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
t � Categorical(w1

t�1, . . . , wP
t�1) for i = 1, . . . , P � 15

Compute �wi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
t � Categorical( �w1

t�1|T , . . . , �wP
t�1|T )7

// Particle propagation

Draw xi
t � rt(xt|xai

t
1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x�

t9

Set xi
1:t = (x

ai
t

1:t�1, xi
t) for i = 1, . . . , P (Eq. 3)10

// Weighting

Compute the weights wi
t = Wt(x

i
1:t) for i = 1, . . . , P (Eq. 5)11

Draw k � Categorical(w1
T , . . . , wP

T )12
return xout

1:T = xk
1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its position and velocity in a two

dimensional plane, and we assume a linear Gaussian dynamic model such that, while active, xtm

evolves according to

xtm = Gxx(t�1)m + Guut =
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where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received

signal strength (RSS), i.e., ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ ntj , where ntj ⇠ N (0, 2) is the noise
term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the transmitted power,
and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
In this figure, we observe that the proposed model and algorithm is able to detect the three targets and
their trajectories with an average position error of around 6 metres. We do not consider a benchmark
algorithm because, to the best of our knowledge, there are not multitarget tracking approaches in the
literature that can deal with targets that may start and stop transmitting at any time.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. More specifically, we record multiple people who are simultaneously speaking, using a
set of microphones. Given the recorded signal, the goal is to separate out the individual speech
signals. Speakers may start speaking or become silent at any given time. Similarly to [23], we
collect data from several speakers from the PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge website.1 The voice signal for each speaker consists of 4 sentences, which we append
with random pauses in between each sentence. We artificially mix the data 10 times (corresponding

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.

• Step 3: Sample the global variables in the model, which include the transition probabilities
and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ + Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
PGAS [13] is a method within the framework of particle MCMC [1] that combines the main ideas,
as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X0,S0), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M‡

m=1. We denote by the vector xi
t the state of the i-th particle at time t. We also

introduce the ancestor indexes ai
t 2 {1, . . . , P} in order to denote the particle that precedes the

i-th particle at time t. That is, ai
t corresponds to the index of the ancestor particle of xi

t. Let also
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1:t be the ancestral path of particle xi
t, i.e., the particle trajectory that is recursively defined as
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Application Model X p(xtm|stm = 1, x(t�1)m, s(t�1)m = 1) L

Multitarget Tracking Infinite factorial LDS R4 N (xtm|Gxx(t�1)m, GuG>
u ) 1

Cocktail Party ICA iFHMM R N (xtm|0,�2
x) 1

Power Dissagregation Non-binary iFHMM {0, 1, . . . , Q � 1} am
jk = p(xtm = k|x(t�1)m = j) 1

Multiuser Detection � AS{0} U(A) 2 N

Table 1: Applications of the iFDM.
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(c) Average position error.

Figure 3: Results for the multitarget tracking problem.

(RSS), where the measurement of sensor j at time t is given by ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ntj .
Here, ntj ⇠ N (0, 2) is the noise term, dmjt is the distance between target m and sensor j at time t,
P0 = 10 is the transmitted power, and d0 = 100 metres and � = 2 are, respectively, the reference
distance and the path loss exponent, which account for the radio propagation model. In our inference
algorithm, we sample the noise variance by placing an InvGamma(1,1) distribution as its prior. Since
the existing BNP approaches cannot handle the dynamical model in Eq. 7, that is, where xtm 2 R4

depends on x(t�1)m, we compare the performance of the iFDM with a ‘genie-aided’ finite factorial
model with perfect knowledge of the number of targets and noise variance.

In Figures 3a and 3b, we show the true and inferred trajectories of the targets, and the temporal
evolution of the position error of the iFDM. Additionally, Figure 3c shows the average position error
(in absolute value) for our iFDM and the genie-aided method. In these figures, we observe that the
proposed model and algorithm is able to detect the three targets and their trajectories, providing
similar performance to the genie-aided method. In particular, both approaches provide average
position errors of around 6 metres, which is thrice the noise variance.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. Given the recorded audio signals from a set of microphones, the goal is to separate out the
individual speech signals of multiple people who are speaking simultaneously. Speakers may start
speaking or become silent at any time. Similarly to [22], we collect data from several speakers from
the PASCAL ‘CHiME’ Speech Separation and Recognition Challenge website.1 The voice signal
for each speaker consists of 4 sentences, which we append with random pauses in between each sen-
tence. We artificially mix the data 10 times (corresponding to 10 microphones) with mixing weights
sampled from Uniform(0, 1), such that each microphone receives a linear combination of all the con-
sidered signals, corrupted by Gaussian noise with standard deviation 0.3. We consider two scenarios,
with 5 and 15 speakers, and subsample the data so that we learn from T = 1, 354 and T = 1, 087
datapoints, respectively. Following [22], our model assumes p(xtm|stm = 1, x(t�1)m, s(t�1)m) =
N (xtm|0, 2), and xtm = 0 whenever stm = 0. We also model yt as a linear combination of all
the voice signals under Gaussian noise, i.e., yt =

PM+

m=1 wmxtm + nt, where nt ⇠ N (0,�2
yI)

is the noise term, wm ⇠ N (0, I) is the 10-dimensional weighting vector associated to the m-th
speaker, and �2

y ⇠ InvGamma(1, 1). We compare our iFDM with the ICA iFHMM in [22] using
FFBS sweeps for inference, with (i) p(xtm|stm = 1) = N (xtm|0, 2) (denoted as FFBS-G), and (ii)
p(xtm|stm = 1) = Laplace(xtm|0, 2) (denoted as FFBS-L).

For the scenario with 5 speakers, we show the true and the inferred (after iteration 10, 000) number
of speakers in Figures 4a, 4b, 4c and 4d, along with their activities during the observation period. In
order to quantitatively evaluate the performance of the different algorithms, we show in Figure 4e
(top) the activity detection error rate (ADER), which is computed as the probability of detecting
activity (inactivity) of a speaker while that speaker is actually inactive (active). As the algorithms
are unsupervised, we sort the estimated chains so that the ADER is minimized. If the inferred
number of speakers M+ is smaller (larger) than the true number of speakers, we consider some

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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Method # of Speakers
5 15

A
D

E
R PGAS 0.08 0.08

FFBS-G 0.25 0.14
FFBS-L 0.14 0.12

M
+

PGAS 5 15
FFBS-G 7 15
FFBS-L 8 15

(e) ADER / Inferred M+.

Figure 4: Results for the cocktail party problem.

Algorithm H. 1 H. 2 H. 3 H. 4 H. 5
PGAS 0.68 0.79 0.60 0.58 0.55
FFBS 0.59 0.78 0.56 0.53 0.43

(a) REDD (‘H’ stands for ‘House’).

Algorithm Day 1 Day 2
PGAS 0.76 0.82
FFBS 0.67 0.72

(b) AMP.

Table 2: Accuracy for the power disaggregation problem.

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and
the power draw of each individual device [11, 7]. We validate the performance of the iFDM on
two different real databases: the Reference Energy Disaggregation Data Set (REDD) [11], and the
Almanac of Minutely Power Dataset (AMP) [15]. For the AMP database, we consider two 24-hour
segments and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses
and 6 devices. Our model assumes that each device can take Q = 4 different states (one inactive
state and three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with
xtm = 0 if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors
of the form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m =

j, s(t�1)m). When xtm = 0, the power consumption of device m at time t is zero (Pm
0 = 0), and

when xtm 2 {1, . . . , Q�1} its average power consumption is given by Pm
xtm

. Thus, the total power
consumption is given by yt =

PM+

m=1 Pm
xtm

+ nt, where nt ⇠ N (0, 0.5) represents the additive
Gaussian noise. For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10).
In this case, the proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we
can also apply the FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of

the estimated consumption of each device (higher is better), i.e., acc = 1�
PT

t=1

PM
m=1 |x(m)

t �x̂
(m)
t |

2
PT

t=1

PM
m=1 x

(m)
t

,

where x
(m)
t and x̂

(m)
t = Pm

xtm
are, respectively, the true and the estimated power consumption by

device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂

(m)
t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
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extra inferred inactive chains (additional speakers). The PGAS-based approach outperforms the two
FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
overestimate the number of speakers, as shown in Figure 4e (bottom).

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and the
power draw of each individual device [6]. We validate the performance of the iFDM on two different
real databases: the Reference Energy Disaggregation Data Set (REDD) [10], and the Almanac of
Minutely Power Dataset (AMP) [14]. For the AMP database, we consider two 24-hour segments
and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses and 6
devices. Our model assumes that each device can take Q = 4 different states (one inactive state and
three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with xtm = 0
if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors of the
form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m = j, s(t�1)m).
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For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10). In this case, the
proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we can also apply the
FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of
the estimated consumption of each device (higher is better), which is measured as [10]
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device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂
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t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
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extra inferred inactive chains (additional speakers). The PGAS-based approach outperforms the two
FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
overestimate the number of speakers, as shown in Figure 4e (bottom).

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and the
power draw of each individual device [6]. We validate the performance of the iFDM on two different
real databases: the Reference Energy Disaggregation Data Set (REDD) [10], and the Almanac of
Minutely Power Dataset (AMP) [14]. For the AMP database, we consider two 24-hour segments
and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses and 6
devices. Our model assumes that each device can take Q = 4 different states (one inactive state and
three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with xtm = 0
if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors of the
form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m = j, s(t�1)m).

When xtm = 0, the power consumption of device m at time t is zero (Pm
0 = 0), and when xtm 2

{1, . . . , Q�1} its average power consumption is given by Pm
xtm

. Thus, the total power consumption
is given by yt =
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+ nt, where nt ⇠ N (0, 0.5) represents the additive Gaussian noise.
For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10). In this case, the
proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we can also apply the
FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of
the estimated consumption of each device (higher is better), which is measured as [10]
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device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂
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t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
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t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
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extra inferred inactive chains (additional speakers). The PGAS-based approach outperforms the two
FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
overestimate the number of speakers, as shown in Figure 4e (bottom).

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and the
power draw of each individual device [6]. We validate the performance of the iFDM on two different
real databases: the Reference Energy Disaggregation Data Set (REDD) [10], and the Almanac of
Minutely Power Dataset (AMP) [14]. For the AMP database, we consider two 24-hour segments
and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses and 6
devices. Our model assumes that each device can take Q = 4 different states (one inactive state and
three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with xtm = 0
if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors of the
form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m = j, s(t�1)m).

When xtm = 0, the power consumption of device m at time t is zero (Pm
0 = 0), and when xtm 2

{1, . . . , Q�1} its average power consumption is given by Pm
xtm

. Thus, the total power consumption
is given by yt =

PM+

m=1 Pm
xtm

+ nt, where nt ⇠ N (0, 0.5) represents the additive Gaussian noise.
For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10). In this case, the
proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we can also apply the
FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of
the estimated consumption of each device (higher is better), which is measured as [10]
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device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂

(m)
t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
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Figure 5: Plane of the office building at Bell Labs Crawford Hill.

Model L
1 2 3 4 5

iFDM 6/6 6/6 6/6 6/6 6/6
iFHMM 3/11 3/11 3/8 1/10 �

(a) # Recovered transmitters / Inferred M+.

Model L
1 2 3 4 5

iFDM 2.58 2.51 0.80 0.30 0.16
iFHMM 2.79 1.38 5.53 1.90 �

(b) MSE of the channel coefficients (⇥10�6).

Table 3: Results for the multiuser detection problem.

gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p

2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
The observations of all the receivers are weighted replicas of the transmitted symbols under noise,
yt =

PM+

m=1

PL
`=1 hm

` x(t�`+1)m + nt, where xtm = 0 for the inactive states, and the chan-
nel coefficients hm

` and noise variance �2
y are provided by WISE software. For inference, we as-

sume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaussian
prior distribution over the channel coefficients, hm

` |�2
` ⇠ CN (0,�2

` I,0), and over the noise term,
nt ⇠ CN (0,�2

yI,0). We place an inverse gamma prior over �2
` with mean and standard deviation

0.01e�0.5(`�1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm

` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1

6⇥12

P
m ||hm

1 �bhm
1 ||2, being bhm

` the inferred channel coefficients. We sort the transmitters
so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.
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and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
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2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
The observations of all the receivers are weighted replicas of the transmitted symbols under noise,
yt =

PM+

m=1

PL
`=1 hm

` x(t�`+1)m + nt, where xtm = 0 for the inactive states, and the chan-
nel coefficients hm

` and noise variance �2
y are provided by WISE software. For inference, we as-

sume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaussian
prior distribution over the channel coefficients, hm

` |�2
` ⇠ CN (0,�2

` I,0), and over the noise term,
nt ⇠ CN (0,�2

yI,0). We place an inverse gamma prior over �2
` with mean and standard deviation

0.01e�0.5(`�1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm

` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
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compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1
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so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
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We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
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together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
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Accuracy

Sources with continuous states

Contributions
üExtension of the infinite factorial HMM:

- Discrete or continuous hidden states.
- System memory.

üInference based on PMCMC:
- Better mixing than standard forward-

filtering backward-sampling.
- Avoids exponential complexity.

üExperiments on 4 relevant applications. Sources with discrete states
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Source SeparationSummary

Infinite Factorial Dynamical Model
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Infinite Factorial Dynamical Model
Isabel	Valera,	Francisco	J.	R.	Ruiz,	Lennart Svensson,	Fernando	Perez-Cruz

üGeneral BNP model for source separation:
- Infers number of sources from data.
- Valid for a wide range of applications.

üEfficient inference.
- Valid for many likelihood and dynamical

models.
üComprehensive set of experiments. 
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Why BNP?

• Pick a large enough #sources.

• Model selection (AIC, BIC).

• Bayesian model selection.

• BNP:

- Model complexity grows with data size.
- Unbounded #sources.
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I Pick a large enough #sources.

I Model selection (AIC, BIC).

I Bayesian model selection.

I BNP:
I Prior over infinite-dimensional parameter space.
I Model complexity grows with data size.
I Unbounded #sources.
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stm 2 {0, 1}• Source activity:

• Dynamic system model:
q Source state:

q Observation model:

System memory: 

• On-off transitions:
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Figure 1: (a) Graphical representation of the iFDM with memory length L = 2. The dashed lines
represent the memory. (b) Equivalent representation using extended states.

where X and S are T ⇥ M matrices containing all the states xtm and stm, respectively. We remark
that the likelihood of yt cannot depend on any hidden state x⌧m if s⌧m = 0.

In order to be able to deal with an infinite number of sources, we place a BNP prior over the binary
matrix S that contains all variables stm. In particular, we assume that S ⇠ mIBP(↵,�0,�1), i.e., S
is distributed as a mIBP [23] with parameters ↵, �0 and �1. The mIBP places a prior distribution
over binary matrices with a finite number of rows T and an infinite number of columns M , in which
each row represents a time instant, and each column represents a Markov chain. The mIBP ensures
that, for any finite value of T , only a finite number of columns M+ in S are active almost surely,
whereas the rest of them remain in the all-zero state and do not influence the observations. We
make use of the stick-breaking construction of the mIBP, which is particularly useful to develop
many practical inference algorithms [19, 23]. Under the stick-breaking construction, two hidden
variables for each Markov chain are introduced, representing the transition probabilities between
the active and inactive states. In particular, we define am = p(stm = 1|s(t�1)m = 0) as the
transition probability from inactive to active, and bm = p(stm = 1|s(t�1)m = 1) as the self-
transition probability of the active state of the m-th chain. In the stick-breaking representation, the
columns of S are ordered according to their values of am, such that a1 > a2 > a3 > . . ., and
the probability distribution over variables am is given by a1 ⇠ Beta(↵, 1), and p(am|am�1) /
(am)↵�1I(0  am  am�1), being I(·) the indicator function [19]. Finally, we place a beta
distribution over the transition probabilities bm of the form bm ⇠ Beta(�0,�1).

The resulting iFDM model, particularized for L = 2, is shown in Figure 1a. Note that this model
can be equivalently represented as shown in Figure 1b, using the extended states s

(e)
tm, with

s
(e)
tm =

⇥
xtm, stm, x(t�1)m, s(t�1)m, . . . , x(t�L+1)m, s(t�L+1)m

⇤
. (2)

This extended representation allows for an FFBS-based inference algorithm. However, the exponen-
tial complexity of the FFBS with the memory parameter L and with continuous-valued hidden states
xtm makes the algorithm intractable in many real scenarios. Hence, we maintain the representation
in Figure 1a because it allows us to derive an efficient inference algorithm.

The proposed iFDM in Figure 1a can be particularized to resemble some other models that have
been proposed in the literature. In particular, we recover: i) the iFHMM in [23] by choosing the
state space X = {0, 1}, xtm = stm and L = 1, ii) the ICA iFHMM in [23] if we set X = R, L = 1
and assume that p(xtm|stm = 1, x(t�1)m, s(t�1)m) = p(xtm|stm = 1) is a Gaussian distribution,
and iii) a BNP counterpart of the LDS [9] with on/off states by assuming L = 1 and X = R, and
letting the variables xtm be Gaussian distributed with linear relationships among them.

3 Inference Algorithm
We develop an inference algorithm for the proposed iFDM that can handle different dynamic and
likelihood models. Our approach relies on a blocked Gibbs sampling algorithm that alternates be-
tween sampling the number of considered chains and the global variables conditioned on the current
value of matrices S and X, and sampling matrices S and X conditioned on the current value of the
remaining variables. In particular, the algorithm proceeds iteratively as follows:

• Step 1: Add Mnew new inactive chains using an auxiliary slice variable and a slice sampling
method. In this step, the number of considered chains is increased from its initial value M+

to M‡ = M+ + Mnew (M+ is not updated because stm = 0 for all t for the new chains).

3

Alternative representation:

System memory 

ü Suitable for FFBS
X Exponential complexity with memory length

s
(e)
tm =

⇥
xtm, stm, x(t�1)m, s(t�1)m, . . . , x(t�L+1)m, s(t�L+1)m

⇤

1. Propose new sources (parallel chains). 
- Slice sampling. 
- Stick-breaking construction. 

2. Update hidden states ,      .
- Particle Gibbs with ancestor sampling. 

3. Remove inactive sources.
4. Sample global variables. 

MCMC based algorithm:

Inference
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(a) Example of the connection of particles
in PGAS. We represent P = 3 particles
xi
⌧ for ⌧ = {t�1, t, t+1}. The index ai

⌧

denotes the ancestor particle of xi
⌧ . It can

be seen that, e.g., the trajectories x1
1:t+1

and x2
1:t+1 only differ at time instant t+1.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x�

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 � r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP

1 = x�
12

Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
t � Categorical(w1

t�1, . . . , wP
t�1) for i = 1, . . . , P � 15

Compute �wi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
t � Categorical( �w1

t�1|T , . . . , �wP
t�1|T )7

// Particle propagation

Draw xi
t � rt(xt|xai

t
1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x�

t9

Set xi
1:t = (x

ai
t

1:t�1, xi
t) for i = 1, . . . , P (Eq. 3)10

// Weighting

Compute the weights wi
t = Wt(x

i
1:t) for i = 1, . . . , P (Eq. 5)11

Draw k � Categorical(w1
T , . . . , wP

T )12
return xout

1:T = xk
1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its position and velocity in a two

dimensional plane, and we assume a linear Gaussian dynamic model such that, while active, xtm

evolves according to

xtm = Gxx(t�1)m + Guut =

�
��

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

�
��x(t�1)m +

�
���

T 2
s

2 0

0
T 2

s

2
Ts 0
0 Ts

�
���ut, (7)

where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received

signal strength (RSS), i.e., ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ ntj , where ntj ⇠ N (0, 2) is the noise
term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the transmitted power,
and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
In this figure, we observe that the proposed model and algorithm is able to detect the three targets and
their trajectories with an average position error of around 6 metres. We do not consider a benchmark
algorithm because, to the best of our knowledge, there are not multitarget tracking approaches in the
literature that can deal with targets that may start and stop transmitting at any time.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. More specifically, we record multiple people who are simultaneously speaking, using a
set of microphones. Given the recorded signal, the goal is to separate out the individual speech
signals. Speakers may start speaking or become silent at any given time. Similarly to [23], we
collect data from several speakers from the PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge website.1 The voice signal for each speaker consists of 4 sentences, which we append
with random pauses in between each sentence. We artificially mix the data 10 times (corresponding

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.

• Step 3: Sample the global variables in the model, which include the transition probabilities
and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ + Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
PGAS [13] is a method within the framework of particle MCMC [1] that combines the main ideas,
as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X0,S0), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M‡

m=1. We denote by the vector xi
t the state of the i-th particle at time t. We also

introduce the ancestor indexes ai
t 2 {1, . . . , P} in order to denote the particle that precedes the

i-th particle at time t. That is, ai
t corresponds to the index of the ancestor particle of xi

t. Let also
xi

1:t be the ancestral path of particle xi
t, i.e., the particle trajectory that is recursively defined as

xi
1:t = (x

ai
t

1:t�1,x
i
t). Figure 2a shows an example to clarify the notation.
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(a) Example of the connection of particles
in PGAS. We represent P = 3 particles
xi
⌧ for ⌧ = {t�1, t, t+1}. The index ai
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denotes the ancestor particle of xi
⌧ . It can

be seen that, e.g., the trajectories x1
1:t+1

and x2
1:t+1 only differ at time instant t+1.
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Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x�

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 � r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP

1 = x�
12

Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
t � Categorical(w1

t�1, . . . , wP
t�1) for i = 1, . . . , P � 15

Compute �wi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
t � Categorical( �w1

t�1|T , . . . , �wP
t�1|T )7

// Particle propagation

Draw xi
t � rt(xt|xai

t
1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x�

t9

Set xi
1:t = (x

ai
t

1:t�1, xi
t) for i = 1, . . . , P (Eq. 3)10

// Weighting

Compute the weights wi
t = Wt(x

i
1:t) for i = 1, . . . , P (Eq. 5)11

Draw k � Categorical(w1
T , . . . , wP

T )12
return xout

1:T = xk
1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its position and velocity in a two

dimensional plane, and we assume a linear Gaussian dynamic model such that, while active, xtm

evolves according to
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where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received

signal strength (RSS), i.e., ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ ntj , where ntj ⇠ N (0, 2) is the noise
term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the transmitted power,
and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
In this figure, we observe that the proposed model and algorithm is able to detect the three targets and
their trajectories with an average position error of around 6 metres. We do not consider a benchmark
algorithm because, to the best of our knowledge, there are not multitarget tracking approaches in the
literature that can deal with targets that may start and stop transmitting at any time.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. More specifically, we record multiple people who are simultaneously speaking, using a
set of microphones. Given the recorded signal, the goal is to separate out the individual speech
signals. Speakers may start speaking or become silent at any given time. Similarly to [23], we
collect data from several speakers from the PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge website.1 The voice signal for each speaker consists of 4 sentences, which we append
with random pauses in between each sentence. We artificially mix the data 10 times (corresponding

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.

• Step 3: Sample the global variables in the model, which include the transition probabilities
and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ + Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
PGAS [13] is a method within the framework of particle MCMC [1] that combines the main ideas,
as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X0,S0), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M‡

m=1. We denote by the vector xi
t the state of the i-th particle at time t. We also

introduce the ancestor indexes ai
t 2 {1, . . . , P} in order to denote the particle that precedes the

i-th particle at time t. That is, ai
t corresponds to the index of the ancestor particle of xi

t. Let also
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1:t be the ancestral path of particle xi
t, i.e., the particle trajectory that is recursively defined as
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Application Model X p(xtm|stm = 1, x(t�1)m, s(t�1)m = 1) L

Multitarget Tracking Infinite factorial LDS R4 N (xtm|Gxx(t�1)m, GuG>
u ) 1

Cocktail Party ICA iFHMM R N (xtm|0,�2
x) 1

Power Dissagregation Non-binary iFHMM {0, 1, . . . , Q � 1} am
jk = p(xtm = k|x(t�1)m = j) 1

Multiuser Detection � AS{0} U(A) 2 N

Table 1: Applications of the iFDM.
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Figure 3: Results for the multitarget tracking problem.

(RSS), where the measurement of sensor j at time t is given by ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ntj .
Here, ntj ⇠ N (0, 2) is the noise term, dmjt is the distance between target m and sensor j at time t,
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Table 2: Accuracy for the power disaggregation problem.

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and
the power draw of each individual device [11, 7]. We validate the performance of the iFDM on
two different real databases: the Reference Energy Disaggregation Data Set (REDD) [11], and the
Almanac of Minutely Power Dataset (AMP) [15]. For the AMP database, we consider two 24-hour
segments and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses
and 6 devices. Our model assumes that each device can take Q = 4 different states (one inactive
state and three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with
xtm = 0 if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors
of the form am

j ⇠ Dirichlet(1), where each element am
jk = p(xtm = k|stm = 1, x(t�1)m =

j, s(t�1)m). When xtm = 0, the power consumption of device m at time t is zero (Pm
0 = 0), and

when xtm 2 {1, . . . , Q�1} its average power consumption is given by Pm
xtm

. Thus, the total power
consumption is given by yt =

PM+

m=1 Pm
xtm

+ nt, where nt ⇠ N (0, 0.5) represents the additive
Gaussian noise. For q 2 {1, . . . , Q � 1}, we assume a prior power consumption Pm

q ⇠ N (15, 10).
In this case, the proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we
can also apply the FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of

the estimated consumption of each device (higher is better), i.e., acc = 1�
PT

t=1
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t |

2
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where x
(m)
t and x̂

(m)
t = Pm

xtm
are, respectively, the true and the estimated power consumption by

device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂

(m)
t = 0 for the undetected devices. If M+ is larger than the true number

of devices, we group all the extra chains as an “unknown” device and use x
(unk)
t = 0. In Table 2 we

show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p

2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
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extra inferred inactive chains (additional speakers). The PGAS-based approach outperforms the two
FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
overestimate the number of speakers, as shown in Figure 4e (bottom).

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
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power draw of each individual device [6]. We validate the performance of the iFDM on two different
real databases: the Reference Energy Disaggregation Data Set (REDD) [10], and the Almanac of
Minutely Power Dataset (AMP) [14]. For the AMP database, we consider two 24-hour segments
and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses and 6
devices. Our model assumes that each device can take Q = 4 different states (one inactive state and
three active states with different power consumption), i.e., xtm 2 {0, 1, . . . , Q � 1}, with xtm = 0
if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors of the
form am

j ⇠ Dirichlet(1), where each element am
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q ⇠ N (15, 10). In this case, the
proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we can also apply the
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In order to evaluate the performance of the different algorithms, we compute the mean accuracy of
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in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
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other chains, leading to poor mixing, as discussed in [20]. As a consequence, the FFBS tends to
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Figure 5: Plane of the office building at Bell Labs Crawford Hill.

Model L
1 2 3 4 5

iFDM 6/6 6/6 6/6 6/6 6/6
iFHMM 3/11 3/11 3/8 1/10 �

(a) # Recovered transmitters / Inferred M+.

Model L
1 2 3 4 5

iFDM 2.58 2.51 0.80 0.30 0.16
iFHMM 2.79 1.38 5.53 1.90 �

(b) MSE of the channel coefficients (⇥10�6).

Table 3: Results for the multiuser detection problem.

gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p

2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
The observations of all the receivers are weighted replicas of the transmitted symbols under noise,
yt =

PM+

m=1

PL
`=1 hm

` x(t�`+1)m + nt, where xtm = 0 for the inactive states, and the chan-
nel coefficients hm

` and noise variance �2
y are provided by WISE software. For inference, we as-

sume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaussian
prior distribution over the channel coefficients, hm

` |�2
` ⇠ CN (0,�2

` I,0), and over the noise term,
nt ⇠ CN (0,�2

yI,0). We place an inverse gamma prior over �2
` with mean and standard deviation

0.01e�0.5(`�1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm

` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1

6⇥12

P
m ||hm

1 �bhm
1 ||2, being bhm

` the inferred channel coefficients. We sort the transmitters
so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

120m

14m
1 2 3 4 5 6

7 8 9 10 11 12
1
2
3

45
6

Figure 5: Plane of the office building at Bell Labs Crawford Hill.

Model L
1 2 3 4 5

iFDM 6/6 6/6 6/6 6/6 6/6
iFHMM 3/11 3/11 3/8 1/10 �

(a) # Recovered transmitters / Inferred M+.

Model L
1 2 3 4 5

iFDM 2.58 2.51 0.80 0.30 0.16
iFHMM 2.79 1.38 5.53 1.90 �

(b) MSE of the channel coefficients (⇥10�6).

Table 3: Results for the multiuser detection problem.

gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L � 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation, A = {±1±p�1p

2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t�1)m, s(t�1)m) = U(A).
The observations of all the receivers are weighted replicas of the transmitted symbols under noise,
yt =

PM+

m=1

PL
`=1 hm

` x(t�`+1)m + nt, where xtm = 0 for the inactive states, and the chan-
nel coefficients hm

` and noise variance �2
y are provided by WISE software. For inference, we as-

sume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaussian
prior distribution over the channel coefficients, hm

` |�2
` ⇠ CN (0,�2

` I,0), and over the noise term,
nt ⇠ CN (0,�2

yI,0). We place an inverse gamma prior over �2
` with mean and standard deviation

0.01e�0.5(`�1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm

` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
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outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
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we recover all the transmitted symbols with no error) found after running the inference algorithms,
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consider a larger value of L, since the model better fits the actual radio propagation model.
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We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
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The observations of all the receivers are weighted replicas of the transmitted symbols under noise,
yt =

PM+

m=1

PL
`=1 hm

` x(t�`+1)m + nt, where xtm = 0 for the inactive states, and the chan-
nel coefficients hm

` and noise variance �2
y are provided by WISE software. For inference, we as-

sume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaussian
prior distribution over the channel coefficients, hm

` |�2
` ⇠ CN (0,�2

` I,0), and over the noise term,
nt ⇠ CN (0,�2

yI,0). We place an inverse gamma prior over �2
` with mean and standard deviation

0.01e�0.5(`�1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm

` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1

6⇥12

P
m ||hm

1 �bhm
1 ||2, being bhm

` the inferred channel coefficients. We sort the transmitters
so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions

We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.
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Infinite Factorial Finite State Machine

I stm 2 {0, 1}: m-th transmitter
is active at time t.

I xtm: transmitted symbols.

xtm|stm ⇠
⇢

�0(xtm) if stm = 0,
Discrete(A) if stm = 1,

I A: constellation.

I nt : additive noise.

nt ⇠ CN (0,�2
y ID , 0).

I h`
m: channel coe�cients.

h`
m|�2

` ⇠ CN (0,�2
` ID , 0) ! Rayleigh fading
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Multiuser Communication System

Multipath propagation Gaussian observation model

yt =

M+�

m=1

L�

�=1

h�
mx(t��+1)m + nt

� am

s0m s1m sTm. . .

�0,�1 bm

x0m x1m xTmx2m x3m . . .

s2m s3m

. . .y1 y2 y3 yT

m = 1, . . . ,�

�2
y

� = 1, . . . , L

�2
� h�

m

�2
H ,�,�
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Accuracy

Sources with continuous states

Contributions
üExtension of the infinite factorial HMM:

- Discrete or continuous hidden states.
- System memory.

üInference based on PMCMC:
- Better mixing than standard forward-

filtering backward-sampling.
- Avoids exponential complexity.

üExperiments on 4 relevant applications. Sources with discrete states

Source 1

IFDM Francisco Ruiz (Columbia University) 2 / 6



Infinite Factorial Dynamical Model

Motivation

Internet of Things.

• Discrete signals (messages).

• Transmitters enter & leave the system.

• Receiver needs to infer #sources.
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Infinite Factorial Dynamical Model

Contributions

Infinite Factorial Dynamical Model

1 A general Bayesian non parametric model for source separation.
• Infers #sources from data.
• Valid for a wide range of applications.

2 Efficient inference.
• Valid for many likelihood and dynamical models.

3 Comprehensive set of experiments.

Multipath propagation
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Infinite Factorial Dynamical Model

Model and Inference
1 Model

• Infinite #parallel chains (based on Markov IBP).
• Finite number of active sources for any finite dataset.

2 Inference
• Infers #active sources, their states, and other parameters.
• Slice sampling & Particle Gibbs with ancestor sampling.

↵ am

s0m s1m sTm. . .

�0,�1 bm

x0m x1m xTmx2m x3m . . .

s2m s3m

. . .y1 y2 y3 yT

m = 1, . . . ,1

Can accommodate:
• Any transition probabilities p(xtm|x(t−1)m, s(t−1)m, stm).

• Any likelihood p(yt |{xtm, x(t−1)m, . . . , x(t−L+1)m}Mm=1).
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Infinite Factorial Dynamical Model

Experiments

Experiments on 4 applications:

• Multi-target tracking.

• Cocktail party.

• Power disaggregation.

• Multi-user detection.

120m

14m
1 2 3 4 5 6

7 8 9 10 11 12
1
2
3

45
6

Wi-Fi system at Bell Labs Crawford Hill
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