A Contrastive Divergence for Combining Variational Inference and MCMC

Francisco J. R. Ruiz 15 October 2019

Probabilistic Modeling Pipeline

- ▶ Posit generative process with hidden and observed variables
- ▶ Given the data, reverse the process to infer hidden variables
- Use hidden structure to make predictions, explore the dataset, etc.

Probabilistic Modeling Pipeline

- ► Incorporate domain knowledge
- Separate assumptions from computation
- ► Facilitate collaboration with domain experts

Applications: Consumer Preferences

Can we use mobile location data to find the most promising location for a new restaurant?

Restaurants in the Bay Area

Applications: Gene Signature Discovery

Can we identify de novo gene expression patterns in scRNA-seq?

Applications: Shopping Behavior

Can we use past shopping transactions to learn customer preferences and predict demand under price interventions?

Inference

6

The Posterior Distribution

$$p(z \mid x) = \frac{p(x, z)}{\int p(x, z) dz}$$

- ▶ The posterior allows us to explore the data and make predictions
- ► Intractable in general
- Approximate the posterior: Bayesian inference

$$p(z \mid x) = \frac{p(x, z)}{\int p(x, z) dz}$$

- **Define** a simple family of distributions $q_{\theta}(z)$ with parameters θ
- ightharpoonup Fit heta by minimizing the KL divergence to the posterior,

$$\theta^* = \operatorname*{arg\,min}\limits_{\theta} \mathrm{KL} ig(q_{ heta}(z) \mid\mid p(z\mid x) ig)$$

Variational inference solves an optimization problem

▶ Minimizing the KL ≡ Maximizing the ELBO

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}(z) \right]$$

▶ Variational inference finds θ to maximize $\mathcal{L}(\theta)$

Mean-Field Variational Inference

Classical VI: Mean-field variational distribution:

$$q_{\theta}(z) = \prod_{n} q_{\theta_n}(z_n)$$

▶ Useful and simple, but might not be accurate

This Talk

This Talk

- **Expand** the variational family $q_{\theta}(z)$
- Key idea: Improve $q_{\theta}(z)$ with a few MCMC steps
 - **Easy** to sample from, $z \sim q_{\theta}(z)$
 - Intractable density, $q_{\theta}(z)$
- ► Challenge: Solve the optimization problem with intractable $q_{\theta}(z)$

Related Work

- Structured VI
- Mixtures
- Spectral methods
- Linear response estimates
- Copulas
- ► Invertible transformations & Normalizing flows
- ► Sampling mechanisms
- ► Hierarchical models
- ► Implicit distributions & Semi-implicit distributions

This Work: Improve VI using MCMC

- ► VI: Scalable but might be inaccurate
- ► MCMC: Asymptotically unbiased but typically slower
- ► This work: Combine the advantages of both

Main Idea: Refine the Approximation with MCMC

- ▶ Draw samples from $q_{\theta}(z)$ and refine them with MCMC
- Optimize $q_{\theta}(z)$ to provide a good initialization for MCMC
- ► For tractable inference: Replace the KL with the **VCD divergence**

Refine the Variational Distribution with MCMC

- Start from an *explicit* variational distribution, $q_{\theta}^{(0)}(z)$
- Improve the distribution with t MCMC steps,

$$z_0 \sim q_{\theta}^{(0)}(z), \qquad z \sim Q^{(t)}(z \,|\, z_0)$$

The MCMC sampler targets the posterior p(z|x)

Implicit distribution

$$q_{\theta}(z) = \int q_{\theta}^{(0)}(z_0) Q^{(t)}(z \mid z_0) dz_0$$

Challenges of Using MCMC in VI

$$\mathcal{L}_{improved}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}(z) \right]$$

- ► Challenge #1: The variational objective becomes intractable
- lacktriangle Challenge #2: The variational objective may depend weakly on heta

$$q_{\theta}(z) \xrightarrow{t \to \infty} p(z \mid x)$$

Alternative Divergence: VCD

- ▶ We would like an objective that avoids these challenges
- lacktriangle We call the objective Variational Contrastive Divergence, $\mathcal{L}_{\mathrm{VCD}}(\theta)$
- Desired properties:
 - Non-negative for any θ
 - Zero only if $q_{\theta}^{(0)}(z) = p(z \mid x)$

Variational Contrastive Divergence

 \blacktriangleright Key idea: The improved distribution $q_{\theta}(z)$ decreases the KL

$$\mathrm{KL}(q_{\theta}^{(0)}(z)\mid\mid p(z\mid x)) \geq \mathrm{KL}(q_{\theta}(z)\mid\mid p(z\mid x))$$
 (equality only if $q_{\theta}^{(0)}(z) = p(z\mid x)$)

► A first objective:

$$\mathcal{L}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$

(it is a proper divergence)

Variational Contrastive Divergence

$$\mathcal{L}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$

- ▶ Still intractable: $\log q_{\theta}(z)$ in the second term
- Add regularizer,

$$\mathcal{L}_{\text{VCD}}(\theta) = \underbrace{\text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x))}_{\geq 0} + \underbrace{\text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z))}_{\geq 0}$$

(still a proper divergence)

Variational Contrastive Divergence

$$\mathcal{L}_{\text{VCD}}(\theta) = \text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x)) + \text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z))$$

- Addresses Challenge #1 (intractability):
 - ► The intractable term $\log q_{\theta}(z)$ cancels out
- ► Addresses Challenge #2 (weak dependence):

Taking Gradients of the VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = -\mathbb{E}_{q_{\theta}^{(0)}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right]$$

- ▶ The first component is the (negative) standard ELBO
 - ▶ Use reparameterization or score-function gradients
- The second component is the new part,

$$\nabla_{\theta} \mathbb{E}_{q_{\theta}(z)} \left[g_{\theta}(z) \right] = -\mathbb{E}_{q_{\theta}(z)} \left[\nabla_{\theta} \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}^{(0)}(z_0)} \left[\mathbb{E}_{Q^{(t)}(z \mid z_0)} [g_{\theta}(z)] \nabla_{\theta} \log q_{\theta}^{(0)}(z_0) \right]$$
(can be approximated via Monte Carlo)

Algorithm to Optimize the VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = -\mathbb{E}_{q_{\theta}^{(0)}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right]$$

- 1. Sample $z_0 \sim q_{\theta}^{(0)}(z)$ (reparameterization)
- 2. Sample $z \sim Q^{(t)}(z \,|\, z_0)$ (run t MCMC steps)
- 3. Estimate the gradient $\nabla_{\theta} \mathcal{L}_{VCD}(\theta)$
- 4. Take gradient step w.r.t. θ

Toy Experiments

Optimizing the VCD leads to a distribution $q_{\theta}^{(0)}(z)$ with higher variance

$$\mathcal{L}_{\text{VCD}}(\theta) \xrightarrow{t \to \infty} \text{KL}_{\text{sym}} \big(q_{\theta}^{(0)}(z) \;,\; p(z \,|\, x) \big)$$

Experiments: Latent Variable Models

- ▶ Model is $p_{\phi}(x,z) = \prod_{n} p(z_n) p_{\phi}(x_n \mid z_n)$
- ► Amortized distribution $q_{\theta}(z_n | x_n) = \int Q^{(t)}(z_n | z_0) q_{\theta}^{(0)}(z_0 | x_n) dz_0$
- ▶ Goal: Find model parameters ϕ and variational parameters θ

Experiments: Latent Variable Models

	average test log-likelihood	
method	MNIST	Fashion-MNIST
Explicit + KL	-111.20	-127.43
Implicit $+$ KL (Hoffman, 2017)	-103.61	-121.86
VCD (this talk)	-101.26	-121.11

(a) Logistic matrix factorization

method	_	test log-likelihood Fashion-MNIST
Explicit + KL	-98.46	-124.63
Implicit + KL (Hoffman, 2017) VCD (this talk)	−96.23 − 95 . 86	$-117.74 \\ -117.65$

(b) VAE

Impact of Number of MCMC Steps

▶ More MCMC steps: Models with better predictive performance

More MCMC steps: Higher computational cost

Conclusion

- ightharpoonup Expand the variational family $q_{\theta}(z)$
- ► Key ideas: Define an *implicit* distribution
 - Improve the variational approximation with a few MCMC steps
 - Tractable inference by optimizing the VCD divergence
- Better predictive performance in latent variable models

This project was funded by the European Commission's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 706760