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Probabilistic Modeling Pipeline

Model

Inference Model

Algorithm Testing

Dataset

Predict &
Explore

» Posit generative process with hidden and observed variables
» Given the data, reverse the process to infer hidden variables

» Use hidden structure to make predictions, explore the dataset, etc.



Probabilistic Modeling Pipeline

Model
Design
Dataset
Inference Model
Algorithm Testing

Predict &
Explore

» Incorporate domain knowledge
> Separate assumptions from computation

» Facilitate collaboration with domain experts



Applications: Consumer Preferences

Can we use mobile location data to find
the most promising location for a new restaurant?
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Applications: Gene Signature Discovery
Can we identify de novo gene expression patterns in scRNA-seq?
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Applications: Shopping Behavior

Can we use past shopping transactions to learn customer preferences
and predict demand under price interventions?
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Inference

Inference
Algorithm



The Posterior Distribution

z|x) = 7p(x,z)
plax) = 22

» The posterior allows us to explore the data and make predictions
» Intractable in general

» Approximate the posterior: Bayesian inference



Variational Inference

» Define a simple family of distributions gg(z) with parameters ¢

> Fit & by minimizing the KL divergence to the posterior,
0" = argmin KL (a9(2) | p(z | x)

» Variational inference solves an optimization problem



Variational Inference

Family of
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Variational Inference
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Variational Inference

» Minimizing the KL = Maximizing the ELBO

L(0) = Eq,(2) [log p(x, z) — log go(2)]

» Variational inference finds 6 to maximize £(0)
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Mean-Field Variational Inference

» Classical VI: Mean-field variational distribution:

q0(2) = [ ] g0.(20)

» Useful and simple, but might not be accurate
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This Talk
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This Talk

» Expand the variational family gy(z)
> Key idea: Improve gg(z) with a few MCMC steps

> Easy to sample from, z ~ qo(2)

» Intractable density, go(z)

» Challenge: Solve the optimization problem with intractable gy(z)
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Related Work
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Structured VI

Mixtures

Spectral methods

Linear response estimates

Copulas

Invertible transformations & Normalizing flows
Sampling mechanisms

Hierarchical models

Implicit distributions & Semi-implicit distributions
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This Work: Improve VI using MCMC

» VI: Scalable but might be inaccurate
» MCMC: Asymptotically unbiased but typically slower

» This work: Combine the advantages of both
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Main ldea: Refine the Approximation with MCMC

» Draw samples from gg(z) and refine them with MCMC
» Optimize gy(z) to provide a good initialization for MCMC

> For tractable inference: Replace the KL with the VCD divergence
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Refine the Variational Distribution with MCMC

> Start from an explicit variational distribution, qéo)(z)

» Improve the distribution with t MCMC steps,
2~a(2), 2~ QY(z]2)
The MCMC sampler targets the posterior p(z | x)
» Implicit distribution

qo(z) = /qéo)(zo)Q(f)(z|Zo)dZO
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Challenges of Using MCMC in VI

Limproved(e) - ]qu(z) [lOg p(X7 Z) - |Og (e[] (Z)]

» Challenge #1: The variational objective becomes intractable

» Challenge #2: The variational objective may depend weakly on 6

t—o0

q0(z) — p(z|x)
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Alternative Divergence: VCD

» We would like an objective that avoids these challenges
> We call the objective Variational Contrastive Divergence, Lycp(6)

» Desired properties:

- Non-negative for any 6

- Zero only if qéo)(z) = p(z|x)
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Variational Contrastive Divergence

> Key idea: The improved distribution gy(z) decreases the KL
0
KL(q,”(2) || plz %)) = KL(an(2) || p(z] X))
(equality only if q(go)(z) = p(z|x))
> A first objective:

L£(0) = KL(qy"(2) || p(z|x)) — KL(gs(2) || p(z|x))

(it is a proper divergence)
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Variational Contrastive Divergence

£(0) = KL(q}(2) || p(z| x)) = KL(qu(2) || p(z] %))

» Still intractable: log go(z) in the second term

» Add regularizer,

Lven(0) = KL(g)(2) || p(z|x)) — KL(qe(2) || p(z| X)) + KL(qs(2) || 9 (2))

>0 >0

(still a proper divergence)
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Variational Contrastive Divergence

Lven(9) = KL(aY(2) || p(z|x)) — KL(qe(2) || p(z|x)) +KL(qs(2) || 95 (2))
> Addresses Challenge #1 (intractability):

» The intractable term log go(z) cancels out

> Addresses Challenge #2 (weak dependence):

t— oo

> Lven(0) 2% KL(gY (2) || p(z]x)) + KL(p(z | x) || ¢5(2))
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Taking Gradients of the VCD

Lvep(0) = -E o, [log p(x,z) — log qé“’(z)] + Eay2) [log p(x,z) — log qé“’(z)]

» The first component is the (negative) standard ELBO

» Use reparameterization or score-function gradients

» The second component is the new part,

VoEq, (2 [g0(2)] = —Eq,(2) [Valog qf;o)(z)] *E 0 ) [EQ(L‘)(Z | 2)[86(2)] Viglog q(()o)

9 (20

(can be approximated via Monte Carlo)

(20)]
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Algorithm to Optimize the VCD

Lvep(0) = —E o) [log p(x,z) — log quo)(Z)] + Eay(2) [log p(x,z) — log qéo)(Z)]

1. Sample zg ~ q((,o)(z) (reparameterization)

2. Sample z ~ QV)(z| z) (run t MCMC steps)
3. Estimate the gradient VyLvcp(6)

4. Take gradient step w.r.t. 6

24



Toy Experiments
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Optimizing the VCD leads to a distribution qéo)(z) with higher variance

Lyven(0) 2% KLy (617(2) , p(z]x))
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Experiments: Latent Variable Models

» Model is py(x, z) = [, p(zn)Pes(Xn | 2n)
> Amortized distribution gs(z,|x,) = [ Q¥)(z,|20)q, )(zo | x,)dzo

» Goal: Find model parameters ¢ and variational parameters 6
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Experiments: Latent Variable Models

average test log-likelihood

method MNIST  Fashion-MNIST
Explicit + KL —111.20 —127.43
Implicit + KL (Hoffman, 2017)  —103.61 —121.86
VCD (this talk) —101.26 —-121.11

(a) Logistic matrix factorization

average test log-likelihood

method MNIST  Fashion-MNIST
Explicit + KL —98.46 —124.63
Implicit + KL (Hoffman, 2017) —96.23 —117.74
VCD (this talk) —95.86 —117.65

(b) VAE
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Impact of Number of MCMC Steps

» More MCMC steps: Models with better predictive performance
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» More MCMC steps: Higher computational cost
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Conclusion
> Expand the variational family gy(2)
» Key ideas: Define an implicit distribution

- Improve the variational approximation with a few MCMC steps

- Tractable inference by optimizing the VCD divergence

» Better predictive performance in latent variable models
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