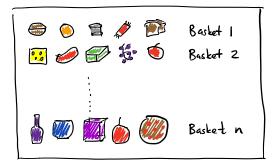
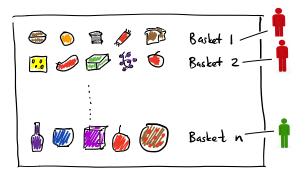
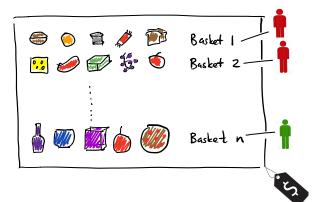
SHOPPER: A Probabilistic Model of Consumer Choice with Substitutes and Complements

Francisco J. R. Ruiz


With Susan Athey and David M. Blei


November 13th, 2018



Why Analyzing Market Basket Data?

- Understand consumer behavior
- Make predictions about demand
- Predict response to promotions or price changes
- Form personalized recommendations

Market Basket Data is Complex

Example:

- Customer preferences vs. complements
- Seasonality effects
- Price effects

Market Basket Data is Complex

Example:

- Customer preferences vs. complements
- Seasonality effects
- Price effects

Challenges:

- Many unobserved and interrelated forces at play
- Exponential number of choices (2^C)
- Large scale: 6M baskets, 5.6K items

SHOPPER

- A sequential probabilistic model of shopping baskets
- Interpretable components
- Captures user heterogeneity, seasonal effects, prices
- Forms predictions under price changes

SHOPPER

An efficient posterior inference algorithm

Empirical study:

- Accurate predictions under price interventions
- Helps identify complements and substitutes

Model: Items Are Chosen Sequentially

- Customer walks into the store and chooses item sequentially
- The sequence ends when customer chooses the "checkout item"
- The joint distribution of trip t is

$$p(\mathbf{y}_t) = p(y_{t1})p(y_{t2} \mid y_{t1}) \cdots p(y_{tn} \mid \mathbf{y}_t^{[n-1]})$$

all previous items in basket

Model: Unobserved Item/User Attributes

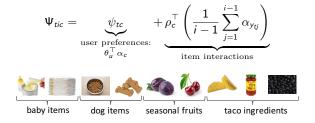
- ▶ The probability of choosing an item depends on *latent factors*
- ▶ Item attributes: $\alpha_c \in \mathbb{R}^K$
- ▶ Item interaction coefficients: $\rho_c \in \mathbb{R}^{K}$
- ▶ User preferences: $\theta_u \in \mathbb{R}^K$

SHOPPER (Vanilla Version)

$$p(\mathbf{y}_t) = p(y_{t1})p(y_{t2} | y_{t1}) \cdots p(y_{tn} | \mathbf{y}_t^{[n-1]})$$

Probability for each step i in trip t,

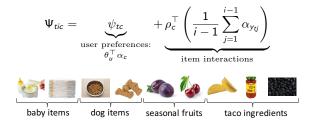
$$p(y_{ti} = c \mid \underbrace{\mathbf{y}_{t}^{[i-1]}}_{\substack{\text{items in} \\ \text{basket}}}) = \frac{\exp\{\Psi_{tic}\}}{\sum_{c' \notin \mathbf{y}_{t}^{[i-1]}}\exp\{\Psi_{tic'}\}}$$

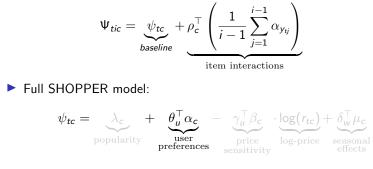

Log-linear model with (mean) utilities

$$\Psi_{tic} = \underbrace{\psi_{tc}}_{\text{user preferences:}} + \underbrace{\rho_c^{\top} \left(\frac{1}{i-1} \sum_{j=1}^{i-1} \alpha_{y_{ij}} \right)}_{\text{item interactions}}$$

SHOPPER (Vanilla Version)

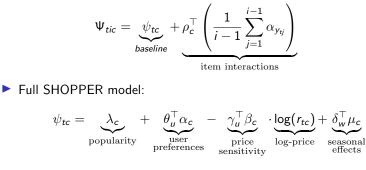
SHOPPER combines ideas from


- Matrix factorization
- Word embeddings & Exponential family embeddings


SHOPPER (Vanilla Version)

SHOPPER captures

- Customer preferences: Baby items (high $\theta_u^{\top} \alpha_{\text{diapers}}$)
- Complements: Taco shells and taco seasoning (high $\rho_{\text{shells}}^{\top} \alpha_{\text{seasoning}}$)
- Substitutes: Two brands of taco shells (low $\rho_{\text{shells}_1}^{\top} \alpha_{\text{shells}_2}$)



Price and Seasonal Effects

- Price sensitivities are factorized (user/item)
- Seasonal effects are factorized (week/item)

Price and Seasonal Effects

- Price sensitivities are factorized (user/item)
- Seasonal effects are factorized (week/item)

Thinking One-Step Ahead

• Customers consider step i + 1 when making the decision about step i

This allows capturing complementarity (details on next slide)

Mathematically,

$$\begin{split} \Psi(c, \mathbf{y}_{t,i-1}) = & \psi_{tc} + \rho_c^\top \left(\frac{1}{i-1} \sum_{j=1}^{i-1} \alpha_{y_{tj}} \right) \\ & + \max_{c' \notin [\mathbf{y}_{t,i-1}, c]} \left\{ \psi_{tc'} + \rho_{c'}^\top \left(\frac{1}{i} \left(\alpha_c + \sum_{j=1}^{i-1} \alpha_{y_{tj}} \right) \right) \right\} \end{split}$$

Consider the following world:

There are 8 items:

- Two types of customers:
 - New parents frequently buy coffee and diapers
 - College students frequently buy ramen and candy
- Each customer also buys either (hot dogs, hot dog buns) or (taco shells, taco seasoning)
- Customers are sensitive to price
 - Decisions about preferred items are independent
 - Decisions about complementary items are by pairs

		stage 1: diapers
	diapers	0.31
_	coffee (†)	0.03
ead	ramen	0.00
non think-ahead	candy	0.00
nk	hot dogs	0.18
thi	hot dog buns	0.17
non	taco shells (†)	0.14
н	taco seasoning	0.17
	checkout	0.00
	diapers	0.37
	coffee (†)	0.02
ч	ramen	0.00
hink-ahead	candy	0.00
c-ał	hot dogs	0.24
lini	hot dog buns	0.24
늰	taco shells (†)	0.06
	taco seasoning	0.06
	checkout	0.00

		stage 1: diapers	stage 2: hot dogs
	diapers	0.31	0.00
_	coffee (\uparrow)	0.03	0.02
ead	ramen	0.00	0.00
non think-ahead	candy	0.00	0.00
nk	hot dogs	0.18	0.25
thi	hot dog buns	0.17	0.25
IOI	taco shells (†)	0.14	0.19
ц	taco seasoning	0.17	0.24
	checkout	0.00	0.05
	diapers	0.37	0.00
	coffee (\uparrow)	0.02	0.02
Ч	ramen	0.00	0.00
think-ahead	candy	0.00	0.00
e-al-	hot dogs	0.24	0.34
ink	hot dog buns	0.24	0.42
th	taco shells (†)	0.06	0.10
	taco seasoning	0.06	0.10
	checkout	0.00	0.02

		stage 1: diapers	stage 2: hot dogs	stage 3: hot dog buns
	diapers	0.31	0.00	0.00
_	coffee (†)	0.03	0.02	0.05
ead	ramen	0.00	0.00	0.00
ah	candy	0.00	0.00	0.00
nk-	hot dogs	0.18	0.25	0.00
thi	hot dog buns	0.17	0.25	0.79
non think-ahead	taco shells (†)	0.14	0.19	0.00
-	taco seasoning	0.17	0.24	0.00
	checkout	0.00	0.05	0.16
	diapers	0.37	0.00	0.00
	coffee (\uparrow)	0.02	0.02	0.07
-	ramen	0.00	0.00	0.00
lea	candy	0.00	0.00	0.00
eat	hot dogs	0.24	0.34	0.00
think-ahead	hot dog buns	0.24	0.42	0.85
th	taco shells (1)	0.06	0.10	0.00
	taco seasoning	0.06	0.10	0.00
	checkout	0.00	0.02	0.08

		stage 1: diapers	stage 2: hot dogs	stage 3: hot dog buns	stage 4: checkout
	diapers	0.31	0.00	0.00	0.00
_	coffee (1)	0.03	0.02	0.05	0.21
non think-ahead	ramen	0.00	0.00	0.00	0.00
ah	candy	0.00	0.00	0.00	0.00
nk-	hot dogs	0.18	0.25	0.00	0.00
thi	hot dog buns	0.17	0.25	0.79	0.00
on	taco shells (†)	0.14	0.19	0.00	0.00
-	taco seasoning	0.17	0.24	0.00	0.00
	checkout	0.00	0.05	0.16	0.79
	diapers	0.37	0.00	0.00	0.00
	coffee (1)	0.02	0.02	0.07	0.10
-	ramen	0.00	0.00	0.00	0.00
think-ahead	candy	0.00	0.00	0.00	0.00
-at	hot dogs	0.24	0.34	0.00	0.00
inķ	hot dog buns	0.24	0.42	0.85	0.00
th	taco shells (1)	0.06	0.10	0.00	0.00
	taco seasoning	0.06	0.10	0.00	0.00
	checkout	0.00	0.02	0.08	0.90

Model Estimation: Bayesian Inference

Prior on latent variables $p(\ell)$ (Gaussian+Gamma)

• Latent variables
$$\ell = [\theta_u, \alpha_c, \lambda_c, \rho_c, \delta_w, \mu_c, \gamma_u, \beta_c]$$

Posterior of latent variables given data,

$$p(\ell \mid \mathcal{Y}, \mathbf{x}) = \frac{p(\ell) \prod_{t=1}^{T} p(\mathcal{Y}_t \mid \ell, x_t)}{p(\mathcal{Y} \mid \mathbf{x})}$$

Variational Inference Approximates the Posterior

• Approximate the posterior $p(\ell | \mathcal{Y}, \mathbf{x})$

Variational inference

- Introduce an approximating distribution $q(\ell)$ over the latent variables
- Find $q(\ell)$ by minimizing the KL divergence to the exact posterior

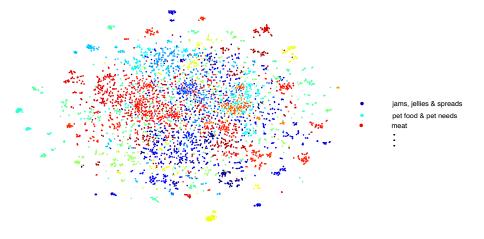
Variational Inference as an Optimization Problem

• Parameterized family of distributions $q_{\nu}(\ell)$

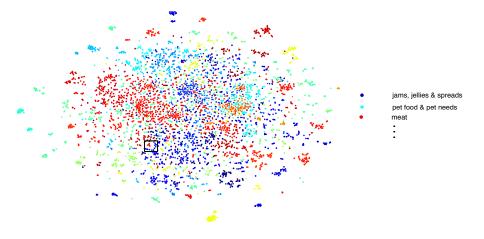
• Minimizing the KL \equiv Maximizing the ELBO

 $\mathcal{L}(\nu) = \mathbb{E}_{q(\ell;\nu)} \left[\log p(\ell, \mathcal{Y} \,|\, \mathbf{x}) - \log q(\ell; \nu) \right]$

> Solve the optimization problem w.r.t. ν


$$u^{\star} = \arg \max_{\nu} \mathcal{L}(\nu)$$

The Dataset in Numbers



- ▶ 6,000,000 items
- ▶ 570,000 baskets
- 3,200 customers
- ▶ 5,600 unique items
- 2 years of data

Projected item features α_c :

Projected item features α_c :

Projected item features α_c (zoom):

 oroweat hot dog buns country white · private brand hotdog buns potato ball park buns hot dog private brand hot dog buns potato kraft cheese sharp 2% milk singles sara lee hot dog buns gourmet coca cola soda cherry fridge pack. tostitos scoops tortilla chips super sz · dr pepper soda fridge pack · · private brand ckn strips crispy · bp franks beef bun length sprite soda fridge pack coca cola classic soda frdo pk potato salad classic 3 lb bp franks bun size 7up soda cool pack · bp franks meat bp franks beef coca cola soda classic fridge pack btl . fritos corn chips scoops 1 ruffles pot chps original family size . fritos corn chips scoops 2 fritos corn chips regular 1 fritos corn chips regular 2 fritos corn chips original fritos corn chips scoops 3 · cheetos cheese snacks crunchy 1 ruffles potato chips original cheetos cheese snack crunchy 2 lays potato chips classic 1 · lays potato chips wavy original lays potato chips classic 2. lavs potato chips original wavy

Item similarities (cosine distance in α_c -space):

mollusks	organic vegetables	granulated sugar	cat food dry/moist
finfish all other - frozen	organic fruits	flour	cat food wet
crustacean non-shrimp	citrus	baking ingredients	cat litter & deodorant
shrimp family	cooking vegetables	brown sugar	pet supplies

Seasonal effects (product $\delta_w^\top \mu_c$):

Halloween candy		cherries	turl	turkey - frozen	
3.46	2006/10/25	3.07	2006/06/28	3.56	2005/11/16
3.34	2005/10/26	3.01	2006/07/12	3.30	2006/11/15
2.81	2005/10/19	2.85	2006/06/21	2.64	2005/11/23
_	:		:		:

Predictions on the Test Set

Log-likelihood on the test set (last 8 weeks of data):

	Log-likelihood				
Model	All (540K)	Price±2.5% (231K)	Price±5% (139K)	Price±15% (25K)	
B-Emb [Rudolph+, 2016]	-5.12	-5.12	-5.15	-5.25	
P-Emb [Rudolph+, 2016]	-5.16	-5.14	-5.20	-5.31	
HPF [Gopalan+, 2015]	-4.91	-4.93	-4.99	-5.06	
SHOPPER (I+U)	-4.74	-4.74	-4.78	-4.82	
SHOPPER (I+U+S)	-4.73	-4.78	-4.80	-4.83	
SHOPPER (I+U+P)	-4.73	-4.75	-4.75	-4.69	
SHOPPER (I+U+P+S)	-4.72	-4.74	-4.77	-4.64	

Predictions on the Test Set

Log-likelihood on the test set (last 8 weeks of data):

	Log-likelihood				
Model	All (540K)	Price±2.5% (231K)	Price±5% (139K)	Price±15% (25K)	
B-Emb [Rudolph+, 2016]	-5.12	-5.12	-5.15	-5.25	
P-Emb [Rudolph+, 2016]	-5.16	-5.14	-5.20	-5.31	
HPF [Gopalan+, 2015]	-4.91	-4.93	-4.99	-5.06	
SHOPPER (I+U)	-4.74	-4.74	-4.78	-4.82	
SHOPPER (I+U+S)	-4.73	-4.78	-4.80	-4.83	
SHOPPER (I+U+P)	-4.73	-4.75	-4.75	-4.69	
SHOPPER (I+U+P+S)	-4.72	-4.74	-4.77	-4.64	

Good predictions on skewed test sets

Complementarity metric,

$$C_{cc'} \triangleq \frac{1}{2} \left(\rho_c^\top \alpha_{c'} + \rho_{c'}^\top \alpha_c \right)$$

$$E_{cc'} \triangleq \frac{1}{2} \left(D_{\mathrm{KL}} \left(p_{\cdot | c} \mid \mid p_{\cdot | c'} \right) + D_{\mathrm{KL}} \left(p_{\cdot | c'} \mid \mid p_{\cdot | c} \right) \right)$$

query	complementarity score	exchangeability score
mission tortilla taco 1	2.40 taco bell seasoning mix2.26 mcrmck seasoning mix2.24 lawrys seasoning mix	0.05 mission fajita 0.07 mission tortilla taco 2 0.13 mission tortilla fluffy gordita
(private) hot dog buns	2.99 bp franks meat2.63 bp franks bun size2.37 bp franks beed bun length	0.11 ball park hot dog buns0.13 (private) hot dog potato buns 10.15 (private) hot dog potato buns 2

Complementarity metric,

$$C_{cc'} \triangleq \frac{1}{2} \left(\rho_c^\top \alpha_{c'} + \rho_{c'}^\top \alpha_c \right)$$

$$E_{cc'} \triangleq \frac{1}{2} \left(D_{\mathrm{KL}} \left(p_{\cdot \mid c} \mid \mid p_{\cdot \mid c'} \right) + D_{\mathrm{KL}} \left(p_{\cdot \mid c'} \mid \mid p_{\cdot \mid c} \right) \right)$$

query	complementarity score	exchangeability score
mission tortilla taco 1	2.40 taco bell seasoning mix2.26 mcrmck seasoning mix2.24 lawrys seasoning mix	0.05 mission fajita 0.07 mission tortilla taco 2 0.13 mission tortilla fluffy gordita
(private) hot dog buns	2.99 bp franks meat2.63 bp franks bun size2.37 bp franks beed bun length	0.11 ball park hot dog buns0.13 (private) hot dog potato buns 10.15 (private) hot dog potato buns 2

Complementarity metric,

$$C_{cc'} \triangleq \frac{1}{2} \left(\rho_c^\top \alpha_{c'} + \rho_{c'}^\top \alpha_c \right)$$

$$E_{cc'} \triangleq \frac{1}{2} \left(D_{\mathrm{KL}} \left(p_{\cdot | c} \mid \mid p_{\cdot | c'} \right) + D_{\mathrm{KL}} \left(p_{\cdot | c'} \mid \mid p_{\cdot | c} \right) \right)$$

query	complementarity score	exchangeability score
mission tortilla taco 1	2.40 taco bell seasoning mix2.26 mcrmck seasoning mix2.24 lawrys seasoning mix	0.05 mission fajita 0.07 mission tortilla taco 2 0.13 mission tortilla fluffy gordita
(private) hot dog buns	2.99 bp franks meat2.63 bp franks bun size2.37 bp franks beed bun length	0.11 ball park hot dog buns0.13 (private) hot dog potato buns 10.15 (private) hot dog potato buns 2

Complementarity metric,

$$C_{cc'} \triangleq \frac{1}{2} \left(\rho_c^\top \alpha_{c'} + \rho_{c'}^\top \alpha_c \right)$$

$$E_{cc'} \triangleq \frac{1}{2} \left(D_{\mathrm{KL}} \left(p_{\cdot | c} \mid \mid p_{\cdot | c'} \right) + D_{\mathrm{KL}} \left(p_{\cdot | c'} \mid \mid p_{\cdot | c} \right) \right)$$

query	complementarity score	exchangeability score
mission tortilla taco 1	2.40 taco bell seasoning mix2.26 mcrmck seasoning mix2.24 lawrys seasoning mix	0.05 mission fajita 0.07 mission tortilla taco 2 0.13 mission tortilla fluffy gordita
(private) hot dog buns	2.99 bp franks meat2.63 bp franks bun size2.37 bp franks beed bun length	0.11 ball park hot dog buns0.13 (private) hot dog potato buns 10.15 (private) hot dog potato buns 2

Conclusions

SHOPPER: A probabilistic model of consumer behavior

- Discrete choice model with interpretable components
- Efficient inference algorithm
- Predictions under price interventions
- Identify limitations

Code publicly available¹

¹https://github.com/franrruiz/shopper-src

Baskets as Unordered Set of Items

Probability of an ordered basket (product of individual choices),

$$p(\mathbf{y}_t | \rho, \alpha, \theta) = \prod_{i=1}^{n_t} p(y_{ti} | \mathbf{y}_t^{[i-1]}, \rho, \alpha, \theta)$$

When the ordering is not observed, sum over all possible orderings

$$p(\mathcal{Y}_t \mid \rho, \alpha, \theta) = \sum_{\pi} p(\mathbf{y}_{t,\pi} \mid \rho, \alpha, \theta)$$

Predictions on the Test Set

Predictive log-likelihood for category-level data:

	Three items	Entire baskets
Non think-ahead Think-ahead	$-4.795(0.005)\\-4.747(0.004)$	$-4.96(0.02)\\-4.91(0.02)$

A Sketch of VI for SHOPPER

Objective

$$\mathcal{L}(
u) = \mathbb{E}_{q_
u(\ell)} \left[\log p(\ell, \mathcal{D}) - \log q_
u(\ell)
ight]$$

Monte Carlo gradient estimator

$$\nabla_{\nu}\mathcal{L}(\nu) = \mathbb{E}_{q_{\nu}(\boldsymbol{\ell})}\left[f(\boldsymbol{\ell},\nu)\right] \approx \frac{1}{S}\sum_{s=1}^{S}f(\boldsymbol{\ell}^{(s)},\nu), \qquad \boldsymbol{\ell}^{(s)} \sim q_{\nu}(\boldsymbol{\ell})$$

Stochastic optimization addresses

- Large datasets
- Intractable expectations
- Variational bounds on the ELBO
 - Unordered baskets
 - Large number of items