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1 Details on the Inference Algorithm

In Step 1, we first sample an auxiliary slice variable ϑ, which is distributed as

ϑ|S, {am} ∼ Uniform (0, amin) , (1)

where amin = minm:∃t,stm 6=0 a
m, and we can replace the uniform distribution with a more flexible

scaled beta distribution. Then, starting fromm =M++1, new variables am are iteratively sampled
from

p(am|am−1) ∝ exp

(
α

T∑
t=1

1

t
(1− am)t

)
(am)α−1(1− am)T I(0 ≤ am ≤ am−1), (2)

with aM+ = amin, until the resulting value is lesser than the slice variable, i.e., until am < ϑ.
Since Eq. 2 is log-concave in log am [15], we can apply adaptive rejection sampling (ARS) [6] in
this step. Let Mnew be the number of new variables am that are greater than the slice variable. If
Mnew > 0, then we expand the representation of matrices S and X by adding Mnew zero columns,
and we sample the corresponding per-chain global variables from the prior, which depends on the
specific application at hand.

In Step 3, we sample the global variables in the model from their complete conditional distributions.1
The complete conditional distribution over the transition probabilities am under the semi-ordered
stick-breaking construction [15] is given by

p(am|S) = Beta (nm01, 1 + nm00) , (3)

being nmij the number of transitions from state i to state j in the m-th column of S. For the transition
probabilities from active to active bm, we have

p(bm|S) = Beta (β0 + nm11, β1 + nm10) . (4)

Finally, we sample the rest of global variables, including the emission or observation variables θ,
from their complete conditionals, which depend on each specific application.

1The complete conditional is the conditional distribution of a hidden variable, given the observations and
the rest of hidden variables.
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2 Experiments Description

Here we provide some details on the four considered applications, regarding the problem descrip-
tion, data preprocessing, hyperparameter choice, and some technical details about the inference
procedure.

In all our applications, we use P = 3, 000 particles for the PGAS kernel, and we set the mIBP
hyperparameters, S ∼ mIBP(α, β0, β1), as α = 1, β0 = 2 and β1 = 0.1. The choice of β0 and
β1 is based on the fact that we expect the active Markov chains to remain active and, therefore, the
self-transition probabilities of the active states bm, which are Beta(β0, β1) distributed, are a priori
expected to be large.

2.1 Multitarget Tracking

Brief problem description. In the multitarget tracking problem, we aim at locating the position of
several moving targets based on noisy observations. Under a general setup, a varying number of
indistinguishable targets are moving around in a region, with targets arising at random in space and
time. Multitarget tracking plays an important role in many areas of engineering such as surveillance,
computer vision and signal processing [14, 16, 11]. Here, we focus on a simple synthetic example to
show that our proposed iFDM can handle time-dependent continuous-valued hidden states. In this
example, we assume that the targets are constantly transmitting radio signals that reach the sensors,
although our model can handle other scenarios as well. We also consider that targets can switch on
and off (i.e., start or stop transmitting) at any given time and, when they switch on, they can be at
any position within the region.

Data acquisition and preprocessing. We generate synthetic data for this application. We place
three different moving targets within a region of 800× 800 metres. Sensors are located on a square
grid, being 200 metres the minimum distance between two sensors. We generate T = 300 observa-
tions. Each transmitter becomes active at a time instant uniformly sampled in the interval [1, T/2]
and becomes inactive T/2 time instants afterwards (this ensures that the different transmitted signals
overlap).

In order to generate data, we consider that the state xtm = [x
(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target

consists of its position and velocity in a two dimensional plane, and we assume a linear Gaussian
dynamic model, i.e., while active, xtm evolves according to

xtm = Gxx(t−1)m +Guut =

 1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

x(t−1)m +


T 2
s

2 0

0
T 2
s

2
Ts 0
0 Ts

ut, (5)

where Ts = 0.5 is the sampling period and ut is a vector that models the acceleration noise. We
assume ut ∼ N (0, I), and when a transition from inactive to active occurs, the position is uniformly
distributed in the sensor network space, while the velocity is Gaussian distributed with zero mean
and covariance 0.01I.

Similarly to [16, 11], sensors measure the received signal strength (RSS). In other words, the obser-
vation of sensor j at time t is given by

ytj =
∑

m:stm=1

P0 ·
(

d0
dmjt

)γ
+ ntj , (6)

where ntj ∼ N (0, 2) is the noise term, P0 = 10 is the transmitted power, dmjt is the distance
between target m and sensor j at time t, and d0 = 100 metres and γ = 2 are, respectively, the
reference distance and the path loss exponent, which account for the radio propagation model.

Model description. We consider the same dynamic and likelihood models that we use to generate
data. In particular, for the dynamical model, we have that2

p(xtm|stm = 1,x(t−1)m, s(t−1)m = 1) = N (xtm|Gxx(t−1)m,GuG
>
u ), (7)

2Note that the covariance matrix specified in Eq. 7 is singular, but we keep this notation for simplicity.
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while p(xtm|stm = 1,x(t−1)m, s(t−1)m = 0) is the product of a uniform distribution for the posi-
tion components and N (0, 0.01I) for the velocity components.

Regarding the likelihood of each 25-length observation vector yt, we use

p(yt|S,X, σ2
y) =

25∏
j=1

p(ytj |S,X, σ2
y) =

25∏
j=1

N

(
ytj

∣∣∣∣∣ ∑
m:stm=1

P0

(
d0
dmjt

)γ
, σ2
yI

)
, (8)

where the noise variance σ2
y is a global variable, over which we place an InvGamma(1, 1) prior.

We compare the performance of our iFDM with a genie-aided factorial model that has perfect knowl-
edge of the number of targets and the noise variance, using PGAS for inference.

Inference and results. We run 10, 000 iterations of the sampling algorithm described in Section 3
of the main paper. The inferred position of each transmitter is obtained by averaging its position for
the last 2, 000 samples. In the main paper, we show the true and the inferred trajectories, as well
as the temporal evolution of the position error (in absolute value). We also show that the average
position error obtained by our iFDM is similar to the genie-aided approach.

2.2 Cocktail Party

Brief problem description. The cocktail party problem is a blind speech separation task, in which
multiple people are speaking simultaneously, and we are interested in distinguishing the individual
speech signals given a set of measurements of the mixed signals. Speakers are not continuously
speaking, but they may start speaking or become silent at any given time [17].

Data acquisition and preprocessing. Similarly to [17], we collect data from several speakers
from the PASCAL ‘CHiME’ Speech Separation and Recognition Challenge website.3 The voice
signal for each speaker consists of 4 sentences, which we append with random pauses in between
each sentence. We artificially mix the data 10 times (corresponding to 10 microphones) with mixing
weights sampled from Uniform(0, 1), such that each microphone receives a linear combination of all
the considered speech signals, corrupted by Gaussian noise with standard deviation 0.3. We consider
two scenarios, with 5 and 15 speakers, and subsample the data so that we learn from T = 1, 354 and
T = 1, 087 datapoints, respectively.

Model description. Given the sub-sampling procedure, and following [17], we can ignore the
dependencies of consecutive values of the voice signal. Hence, we assume that the latent states are
distributed as

p(xtm|stm = 1, x(t−1)m, s(t−1)m) = N (xtm|0, 2), (9)

and p(xtm|stm = 0, x(t−1)m, s(t−1)m) = δ0(xtm), where δ0(·) denotes a point mass located at 0.

The likelihood of the observation yt is given by a Gaussian distribution of the form

p(yt|S,X, {wm}, σ2
y) = N

yt

∣∣∣∣∣
M+∑
m=1

wmxtm, σ
2
yI

 . (10)

where wm ∼ N (0, I) is the 10-dimensional weighting vector associated to the m-th speaker, and
σ2
y ∼ InvGamma(1, 1) is the noise variance.

For comparisons, we apply the ICA iFHMM in [17] using FFBS sweeps for inference, with (i)
p(xtm|stm = 1) = N (0, 2) (FFBS-G), and (ii) p(xtm|stm = 1) = Laplace(0, 2) (FFBS-L).

Inference and results. The continuous variables X can be integrated out to improve the mixing
of the inference algorithm, as detailed in [17]. We follow a similar approach, in which we inte-
grate X before sampling matrix S, and instantiate X by sampling from its posterior afterwards. The
PGAS algorithm allows us to marginalize X from the likelihood in (10) for each particle to obtain
p(yt|S, {wm}, σ2

y), and hence particles are binary vectors in this case. In contrast, the FFBS al-
gorithm samples each column of S conditioned on the current values of the remaining ones, which
also requires conditioning on X for all but the considered column. Hence, under this approach, we
integrate out one column of X, run the FFBS over that column of S, and resample the column of

3http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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X from its posterior afterwards. Since we condition on the values of the remaining columns, we
can use the Laplace prior over xtm instead of the Gaussian prior and still follow the same procedure
[17].

We run 10, 000 iterations of the inference algorithms. In order to evaluate the performance of each
approach, we report in the main paper the estimated number of speakers as well as the activity
detection error rate (ADER), which is computed as the probability of detecting activity (inactivity)
of a speaker while that speaker is actually inactive (active). We average the estimated number of
speakers and the ADER for the last 2, 000 iterations of the sampler.

2.3 Power Disaggregation

Brief problem description. The power disaggregation problem consists in, given the aggregate
whole-home power consumption signal, estimating both the number of active devices in the house
and the power draw of each individual device. Accurate estimation of the specific device-level
power consumption avoids instrumenting every individual device with monitoring equipment, and
the obtained information can be used to significantly improve the power efficiency of consumers
[4, 13]. Furthermore, it allows providing recommendations about their relative efficiency (e.g., a
household that consumes more power in heating than the average might need better isolation) and
detecting faulty equipment.

Recently, this problem has been addressed in [9] by applying a factorial hidden semi-Markov model
(HSMM) and using an expectation maximization (EM) algorithm, and in [8] using an explicit-
duration hierarchical Dirichlet process HSMM. However, in both works, the number of devices
in the house is assumed to be known. Furthermore, the former uses training data to learn the device
models, and the latter includes prior knowledge to model each specific device.

Data acquisition and preprocessing. We consider two different real databases for the power dis-
aggregation problem:

• The REDD database [10], which monitors several homes at low and high frequency for
large periods of time. We consider a 24-hour segment across 5 houses and choose the low-
frequency power consumption of 6 devices: refrigerator (R), lighting (L), dishwasher (D),
microwave (M), washer-dryer (W) and furnace (F). We apply a 30-second median filter and
scale the data dividing by 100.

• The AMP database [12], which records the power consumption of a single house using 21
sub-meters for an entire year (from April 1st, 2012 to March 31st, 2013) at one minute read
intervals. We consider two 24-hours segments and choose 8 devices: basement plugs and
lights (BME), clothes dryer (CDE), clothes washer (DWE), kitchen fridge (FGE), heat
pump (HPE), home office (OFE), entertainment-TV, PVR, AMP (TVE) and wall oven
(WOE). We scale the data by a factor of 1/100.

Model description. Our model for this application is a non-binary iFHMM, in which we assume that
each device can take Q = 4 different states (one inactive state and three active states with different
power consumption), i.e., xtm ∈ {0, 1, . . . , Q − 1}. We place a symmetric Dirichlet prior over the
transition probability vectors of the form amj ∼ Dirichlet(1), being amj the transition probability
vector from state j of device m. Hence, the dynamical model can be written as

p(xtm = k|stm = 1, x(t−1)m = j, s(t−1)m,a
m
j ) = amjk, (11)

being amjk the elements of amj , and

p(xtm|stm = 0, x(t−1)m, s(t−1)m) = δ0(xtm). (12)

The state xtm = 0 corresponds to the inactive state and, therefore, when xtm = 0 the power
consumption of devicem at time t is zero (Pm0 = 0). For the active states, when xtm ∈ {1, . . . , Q−
1}, its average power consumption is given by Pmxtm

. The total power consumption yt is assumed
Gaussian distributed as

p(yt|S,X, {Pmq }) = N

yt
∣∣∣∣∣
M+∑
m=1

Pmxtm
, 0.5

 . (13)

4



L (42%)

R (24%)

D (22%)

M (12%)

(a) Ground truth.
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Figure 1: REDD - House 1. Percentage of the total power consumption consumed by each device.
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OFE (4%)

TVE (7%)

(a) Ground truth.

BME (19%)

CDE (19%)
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HPE (56%)

(b) PGAS.

BME (5%)
CDE (5%)

DWE (4%)

FGE (12%)

HPE (74%)

(c) FFBS.

Figure 2: AMP - Day 1. Percentage of the total power consumption consumed by each device.

For q ∈ {1, . . . , Q− 1}, we assume Pmq ∼ N (15, 10).

Inference and results. We run 10, 000 iterations of our inference algorithm. Since the model re-
sembles a non-binary iFHMM in this case, we also apply a FFBS-based algorithm for comparisons.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of
the estimated consumption of each device (higher is better), which is measured as [10]

acc = 1−
∑T
t=1

∑M
m=1 |x

(m)
t − x̂(m)

t |
2
∑T
t=1

∑M
m=1 x

(m)
t

, (14)

where x(m)
t and x̂(m)

t = Pmxtm
are, respectively, the true and the estimated power consumption by

device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂(m)

t = 0 for the undetected devices. IfM+ is larger than the true number
of devices, we group all the extra chains as an “unknown” device and use x(unk)

t = 0.

The obtained accuracy values, averaged for the last 2, 000 iterations of the sampler, are reported in
the main paper. Here, we additionally show the true percentage of total power consumed by each
device, together with the inferred percentages (also averaged for the last 2, 000 iterations), for both
inference algorithms. In particular, Figures 1 and 2 show the results for House 1 of the REDD
database and Day 1 of the AMP database, respectively. In these plots, we have considered that any
percentage below 1% is negligible.
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2.4 Multiuser Detection

Brief problem description. When digital symbols are transmitted over communication channels,
inter-symbol interference (ISI) may occur, degrading the performance of the receiver. To improve the
performance, channel estimation is applied to mitigate the effects of ISI. Blind channel estimation
involves channel estimation (typically jointly with symbol detection) without the use of training
data. We address the problem of blind joint channel parameter and data estimation in a multiuser
communication channel in which the number of transmitters is not known. In the literature, we
can find several works addressing this problem [19, 7, 20, 3, 1, 2, 18]. However, a characteristic
shared by all of them is the assumption of an explicit upper bound for the number of transmitters
(users), which may represent a limitation in some scenarios. Our BNP approach naturally avoids
this limitation by assuming instead an unbounded number of transmitters.

Data acquisition and preprocessing. We focus on a Wi-Fi multiuser communication channel.
Wi-Fi systems are not limited by the noise level, which is typically negligible, but by the user
interferences, which can be avoided by using a particular frequency channel for each user. Our
goal is to show that cooperation of receivers in a Wi-Fi communication system can help recover
the symbols transmitted by several users even when they simultaneously transmit over the same
frequency channel, therefore allowing for a larger number of users in the system.

We use WISE software [5] to design a realistic indoor wireless system in an office located at Bell
Labs Crawford Hill. WISE software, developed at AT&T Bell Laboratories, includes a 3D ray-
tracing propagation model, as well as algorithms for computational geometry and optimization, to
calculate measures of radio-signal performance in user-specified regions. Its predictions have been
validated with physical measurements [5].

The bandwidth of the Wi-Fi system is 20 MHz or, equivalently, 50 ns per channel tap. We place 12
receivers and 6 transmitters across the office, intentionally placing the transmitters together in order
to ensure that interferences occur in the nearby receivers. We simulate the transmission of 1, 000-
symbol bursts over this communication system, using a QPSK constellation normalized to yield
unit energy. We scale the channel coefficients by a factor of 100, and we consequently multiply the
noise variance by 104, yielding σ2

y ≈ 7.96× 10−9. We set the transmission power to 0 dBm. Each
transmitter becomes active at a random point, uniformly sampled in the interval [1, T/2], and we
consider an observation period of T = 2, 000.

The observations of all the receivers are generated as yt =
∑M+

m=1

∑L
`=1 h

m
` x(t−`+1)m + nt, being

hm` for ` = 1, . . . , L the channel coefficients as provided by WISE software, xtm the transmitted
symbols (or zero if transmitter m is inactive at time instant t), and nt ∼ CN (0, σ2

yI,0) the additive
noise term.4

Model description. While active, the transmitted symbols are independent and uniformly dis-
tributed in the QPSK constellation A = {±1±

√
−1√

2
}, so we set

p(xtm|stm = 1, x(t−1)m, s(t−1)m) = U(A), (15)

where U(A) stands for the uniform distribution over the set A. For the inactive states, we use
p(xtm|stm = 0, x(t−1)m, s(t−1)m) = δ0(xtm).

The observations of all the receivers are weighted replicas of the transmitted symbols under complex
Gaussian noise, i.e.,

p(yt|S,X, {hm` }) = CN

yt

∣∣∣∣∣
M+∑
m=1

L∑
`=1

hm` x(t−`+1)m, σ
2
yI,0

 . (16)

We assume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaus-
sian prior distribution over the channel coefficients, hm` |σ2

` ∼ CN (0, σ2
` I,0). We place an inverse

4The complex Gaussian distribution over a vector x of length D, denoted as CN (µ,Γ,C), is given by

p(x) = 1

πD
√

det(Γ) det(P)
exp

{
− 1

2

[
(x− µ)H, (x− µ)>

] [ Γ C
CH Γ?

]−1 [
x− µ

(x− µ)?

]}
, where P =

Γ? − CHΓ−1C, (·)? denotes the complex conjugate, and (·)H denotes the conjugate transpose. A circularly
symmetric complex Gaussian distribution has µ = 0 and C = 0.
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gamma prior over σ2
` with mean and standard deviation 0.01e−0.5(`−1). The choice of this particular

prior is based on the assumption that the channel coefficients h`m are a priori expected to decay with
the memory index `, since the radio signal suffers more attenuation as it propagates through the
walls and bounces off them.

Inference and results. In our experiments, we vary L from 1 to 5. Five channel taps correspond to
the radio signal travelling a distance of 750 m, which should be enough given the dimensions of this
office space (the signal suffers attenuation when it reflects on the walls, so we should expect it to be
negligible in comparison to the line-of-sight ray after a 750-m travelling distance). We compare our
iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using FFBS sweeps
for inference (we do not run the FFBS algorithm for L = 5 due to its computational complexity).

We observed in our experiments a poor performance in terms of error rates. However, we found that
we could improve the performance by considering a communication channel with higher noise vari-
ance or, equivalently, a lower signal-to-noise ratio (SNR). This counter-intuitive effect can be easily
understood by taking into account the posterior distribution and the inference procedure. When
the SNR is high enough, the noise variance is too small compared to the variance of the channel
coefficients, which makes the posterior get narrow around the true value of these coefficients. In
other words, the posterior uncertainty on the channel coefficients becomes small, and similarly for
the transmitted symbols. As a consequence, an inference algorithm based on random exploration
of the posterior needs more iterations to find the peaks of the posterior distribution. In practice, we
cannot afford such large number of iterations. Instead, we propose a solution based on an heuristic
to artificially widen the posterior distribution. For that purpose, we add artificial noise to the obser-
vations, consequently decreasing the SNR. From an “exploration versus exploitation” perspective,
this method eases exploration of the posterior. At each iteration of the algorithm, we slightly in-
crease the SNR by reducing the variance of the artificial noise, and we repeat this procedure until
we reach the actual value of the noise variance. After that, we run additional iterations to favor ex-
ploitation. In our experiments, we linearly increase the SNR for around 26, 600 iterations, running
3, 400 additional iterations with fixed SNR afterwards.

As a metric, we measure the MSE of the first channel tap, i.e., 1
6×12

∑
m ||hm1 − ĥm1 ||2, averaged for

the last 2, 000 iterations of the algorithm, and report the obtained results in the main paper. We also
show in the main paper the number of inferred transmitters M+, as well as the number of recovered
transmitters (also averaged for the last 2, 000 iterations), where we say that a transmitter has been
recovered if the symbol error rate is equal to zero. In order to match the inferred transmitters to the
true ones, we sort the transmitters so that the MSE is minimized.
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