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Abstract—In this paper, we propose nontrivial codes that
achieve a non-zero zero-error rate for several odd-letter noisy-
typewriter channels. Some of these codes (specifically, those which
are defined for a number of letters of the channel of the form
2n + 1) achieve the best-known lower bound on the zero-error
capacity. We build the codes using linear codes over rings, as we
do not require the multiplicative inverse to build the codes.

I. INTRODUCTION

Zero-error information theory, or error-free information
theory, is a branch of information theory in which no errors
can be tolerated. It was recently discussed in [1], where classic
and new results and its applications to information theory were
shown. In this paper, we focus on the channel coding results of
this broader theory. For the channel-coding problem, Shannon
defined in 1956 the zero-error capacity C0 of a noisy channel
[2] as: “the least upper bound of rates at which it is possible
to transmit information with zero probability of error”. In that
paper, Shannon showed that zero capacity is zero if there is
a non-zero probability of error for any pair of input symbols
(i.e., at least one input symbol can be mistaken for any other
input symbol), but it could be non-zero otherwise. Shannon
also defined the adjacency between the input symbols, in
which we “say that two input symbols are adjacent if there
is an output letter which can be caused by either of these
two”. Shannon constructed an adjacency matrix, in which the
entry (i, j) is one if the letters i and j are adjacent and 0
otherwise. From this matrix, he proposed a linear graph in
which the vertices represented the letters and any two letters
were connected if the corresponding entry in the adjacency
matrix is one. Shannon used this matrix and its graphical
interpretation to obtain or lower-bound the zero-error capacity
for several channels.

In this work, we concentrate on the M -letter noisy-
typewriter channel, as defined in [3], and its zero-error ca-
pacity (see Fig. 1a). From the point of view of the graph that
represents this channel, it corresponds to a M -vertices cycle
(as shown in Fig. 1b).

For M being an even number, the problem of getting C0

for this channel is trivially solved by transmitting only one out
of every two input letters (e.g., transmitting only the letters
0, 2, . . . ,M − 2). Doing so yields the result C0 = log2

M
2 ,

which in this case equals the channel capacity. For an odd
value of M , trivial bounds on the zero-error capacity can be
found. Since the behavior must be at least as good as a noisy-
typewriter channel with M − 1 letters, C0 is lower-bounded
by the quantity log2

M−1
2 . Since for any given channel, C0

cannot exceed the ordinary capacity, given in [3], the upper
bound is log2

M
2 . Thus, for M being an odd number, we have:

log2

(
M − 1

2

)
≤ C0 ≤ log2

(
M

2

)
(1)

The main contribution of this paper is the construction of
codes that achieve larger rates than the trivial lower bounds
given by (1).

(a) (b)

Fig. 1. The M -letter noisy-typewriter channel, and its associated graph.

A. Previous work on the zero-error capacity

Several methods have been studied in order to find the
precise value of C0. For M = 3, Shannon proved that C0 = 0,
i.e., transmission with zero probability of error is not possible
over this channel, since all letters are adjacent. Shannon also
found a code for M = 5 that achieved the zero-error rate of
1
2 log2 5 (simply by constructing the following dictionary of
codewords: 00, 12, 24, 31 and 43) [2].

Later on, in 1979, Lovász cleverly proposed a method to
upper-bound the zero-error capacity of any arbitrary channel
[4]. When applied to the M -vertices cycle graph, whith odd
M , it yields the lowest upper bound on the zero-error capacity
for this channel:

N0 = 2C0 ≤ M cos(π/M)
1 + cos(π/M)

(2)

When applied for M = 5, it can be seen that the zero-
capacity for this channel is achieved by Shannon’s 1956 code.

For M ≥ 7, the zero-error capacity is still unknown. In
particular, for M = 7, the best known lower bound on C0 is
given in Vesel and Zerovnik’s 2002 work: N0 ≥ 4

√
108 [5].

For greater odd values of M , several lower bounds have been
proposed. Baumert et al. [6] proved that:
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N0 ≥ n
√
k(k2n + 1)n−1, for M = k2n + 1 (3)

N0 ≥ n

√
k(k2n + 3)n + 1

k2n + 1
, for M = k2n + 3 (4)

Bohman also established some results concerning on the
zero-error capacity of the channel represented by a M -vertices
cycle graph. In [7], he proved that for M = k2n + 2n−1 + 1,
the value of N0 is lower-bounded by:

N0 ≥ n

√
kMn−1 +

(
M − 1

2

)
Mn−2 (5)

However, whereas these bounds are widely known, no codes
have been proposed in order to achieve the corresponding zero-
error rates, apart from Shannon’s 1956 code. In this paper, we
propose new achievable codes that present larger rates than
those given by the trivial lower bound for several odd values
of M ≥ 7.

The paper is organized as follows. We show the achievabi-
lity results in Section II, we present some other examples of
codes in Section III and we conclude the paper in Section IV.

II. CODES OVER RINGS

In order to construct the achievable codes, instead of work-
ing with the adjacency matrix and the graphs proposed by
Shannon, we resort to standard linear codes that are defined
over rings. For the M -letter noisy-typewriter channel, we can
define the channel by the linear operation:

y = (x+ e) mod M, (6)

where e can either take the value 0 or 1, depending on whether
the channel has flipped a letter or it has not, while x and
y ∈ {0, 1, . . . ,M − 1}. As the error can only take the values
0 or 1, we do not need the property that every element of the
set has a multiplicative inverse, and hence we can work with
rings instead of finite fields, which allows finding a linear code
for any M , not only those that are prime or power of a prime.

The codes we propose allow us not only to show a way
of achieving a zero-error rate, but also to give an alternative
proof of the lower bound that C0 must satisfy. In particular,
for values of M of the form M = 2n + 1, we find the same
zero-error rate than the lower bound given in (3).

Also, it is known that, as M grows, N0 → M
2 , which

implies that zero-error capacity can be achieved with linear
block codes over rings as M tends to infinity.

We start by emphasizing that Shannon’s code for M = 5 is
actually a linear block code with generator matrix G = [1 2],
operating under modulo 5 addition and multiplication. It is
straightforward to check that the alternative matrix G = [1 3],
under identical operations, also yields a zero-error code (in
which the full dictionary would be composed by the code-
words: 00, 13, 21, 34 and 42). In that case, the corresponding
parity-check matrix would be given by H = [1 2]. Note that,
since each of the elements of the error vector e can either take

the value 0 or 1, the operations implemented at the decoder
in order to compute the (scalar) syndrome are indeed a binary
to base-5 conversion.

In addition, for M = 7 letters, the same parity-check matrix
can be used to generate a code with zero error probability,
although the rate would fall below log2(3). For M ≥ 8, one
can do better by setting H = [1 2 4] and operating under
modulo M addition and multiplication.

In general, for a noisy-typewriter channel of M letters, we
can construct a (n, k) M -ary code with n ≤ log2M , k = n−1
and a parity-check matrix H of the form:

H =
[

1 2 22 · · · 2n−1
]
, (7)

which can be identified with a cyclic linear code with a
generator polynomial g(x) = 1− 2x.

As every element of the error vector e is binary, the binary
to base-M conversion implemented at the decoder in order to
obtain the syndrome yields an integer strictly lesser than M .
That is, the maximum value of the syndrome is given by:

smax =
n−1∑
i=0

2i = 2n − 1 < 2n ≤M

Since this quantity is always less than M and every possible
error vector produces a different value of the syndrome,
there are exactly 2n different achievable syndromes, so all
error vectors can be correctly identified at the decoder with
probability one. Hence, it follows that there is no need to
compute any multiplicative inverse elements, and the code can
be defined to operate over a ring (instead of a Galois field, as
usual [8], [9]). This result yields the following lower bound
on C0:

C0 ≥
n− 1
n

log2M, n ≤ log2M (8)

For values of M of the form M = 2n, all the possible
syndromes are achievable and the code is a perfect code. Note
that, if M can be written as M = 2n+1, then equations (8) and
(3) yield the same rate, which means that we have provided
codes that achieve the best-known lower-bound on zero-error
capacity for these precise values of M .

For M = 2n, we know that the best code is a nonlinear
code that uses one out of two letters, but the code defined
by the parity check matrix in (7) also achieves the same rate
and, hence, capacity. Additionally, we cad add for these codes
the label of perfect codes. They are not perfect in the sphere
packing sense, but in the sense that every syndrome defines
an error and every error is mapped to a single syndrome.
Therefore, for those M = 2n, a higher rate code cannot be
found (something that we already knew).

III. OTHER CODES

Apart from the already exposed, we have tried several
other linear codes over rings, leading to better results than
the previous ones for certain values of M . Since there exist
no procedure to construct linear codes over rings, we have
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obtained them through a random search. We have focus on
codes of rate (n − 2)/n for odd n that yield possible codes
for M ≥ 2n−5 + 2n−4 + 1.

For instance, it is possible to construct a (5, 3) code for the
7-letter channel using the following parity-check matrix:

H =
[

1 0 3 5 3
0 1 1 2 3

]
(9)

For M = 13, a (7, 5) code can be defined, yielding
zero error probability. The corresponding parity-check matrix
needed to achieve this result is given by:

H =
[

8 4 5 5 10 3 3
5 0 9 10 7 10 1

]
(10)

We have also found similar codes for M = 25 and 49,
with rates 7/9 and 9/11 respectively, given by the following
parity-check matrices:

H =
[

24 19 0 0 13 5 24 22 0
21 13 1 2 13 4 0 7 12

]
(11)

H =
[

19 19 4 11 16 22 44 35 6 38 16
0 1 45 0 2 0 0 4 4 12 24

]
(12)

It is still unclear if there is a way to construct these codes
systematically and how can we achieve other rates.

See Figs. 2 and 3 for details on the achievable rates that have
been found. Note that none of the proposed codes achieves a
higher rate than the previously known lower bounds, although
the codes defined for M = 2n + 1 achieve those bounds.
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Fig. 2. Lower bounds on C0 as a function of M . The vertical axis has
been chosen so that the trivial bounds given by (1) correspond to horizontal
lines at 0 and 1/2. Stars and crosses show the values attained by the proposed
codes (from equation (7) in section II and (9)-(12) in section III, respectively),
whereas circles show the previously known lower bounds (from equations (3)-
(5) and Theorem 3.1 in [7]). The continuous line shows the upper bound given
by Lovász (it is only valid for odd values of M ).
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Fig. 3. Zoom on Fig. 2 for small values of M . This figure is included
to clarify the performance of the codes from section III. Black crosses
correspond, from left to right, to the codes defined by equations (9), (10),
(11) and (12).

IV. CONCLUSION

To sum up, we have given a way to construct zero-error
rate codes for the noisy-typewriter channel of an odd number
of letters M . The rates of these codes do not improve the
previously known lower bounds on the zero-error capacity, but
they provide the same values when M can be written on the
form M = 2n + 1, so the codes can be seen as an alternative
proof of the achievability results.

The peculiarity of these codes lies on the fact that they are
based on linear codes defined over rings instead of Galois
fields, as usual.
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